USC Logo Signed Distance Fields for
Polygon Soup Meshes
Graphics Interface 2014

Signed distance fields


Project material



Many meshes in computer animation practice are meant to approximate solid objects, but the provided triangular geometry is often unoriented, non-manifold or contains self-intersections, causing inside/outside of objects to be mathematically ill-defined. We describe a robust and efficient automatic approach to define and compute a signed distance field for arbitrary triangular geometry. Starting with arbitrary (non-manifold) triangular geometry, we first define and extract an offset manifold surface using an unsigned distance field. We then automatically remove any interior surface components. Finally, we exploit the manifoldness of the offset surface to quickly detect interior distance field grid points. We prove that exterior grid points can reuse a shifted original unsigned distance field, whereas for interior cells, we compute the signed field from the offset surface geometry. We demonstrate improved performance both using exact distance fields computed using an octree, and approximate distance fields computed using fast marching. We analyze the time and memory costs for complex meshes that include self-intersections and non-manifold geometry. We demonstrate the effectiveness of our algorithm by using the signed distance field for collision detection and generation of tetrahedral meshes for physically based simulation.

Comments, questions to Jernej Barbič.

Related projects



Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Copyright notice

The documents contained in these directories are included by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

Unique accesses:

free hit counter