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Abstract

This technical report gives the exact corotational linear FEM stiff-
ness matrix for a linear tetrahedral element. The matrix is obtained
by computing the higher-order terms (corrections) originating be-
cause the element rotation varies with the tet deformation.

1 Introduction

Let my,my,m3,m4 € R3 be the vertices of a tet in the undeformed

configuration, and let x1,x2,x3,X4 € R3 be their positions in the de-

formed configuration. The deformation gradient F' € R3*3 of the tet

equals the upper-left 3 x 3 block of the 4 x 4 matrix PV ! [Miiller

and Gross 2004], where
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Polar decomposition on F gives F = RS, where R is orthonor-

mal, and S is symmetric. The corotational FEM elastic forces
=t A A AT e R!2 on the tet vertices equal

f= RKrest (RTX - m)7 ()

where Krest € R12%12 is the element stiffness matrix in the rest
configuration, and we have assembled m = [m! ,m1,m% ,m!]" and
x= [x{,xg,xg,xf]T. Given any 3 x 3 matrix A, we will use the hat
notation A to denote the 12 x 12 block-diagonal matrix with four
diagonal 3 x 3 blocks A.

2 Exact tangent stiffness matrix

For implicit integration, it is necessary to compute the gradient of
f with respect to x, the tangent stiffness matrix K = df/dx. This
matrix is traditionally approximated [Miiller and Gross 2004] as
RKotRT , where Kieg is the linear FEM stiffness matrix. However,
because F is a function of x, so is R, and therefore the exact tangent
stiffness matrix incorporates two additional terms:
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K= RKrestRT + [WKrest (RTX - m)]// + [RKrestW )C] 0 3)
where x’ € R denotes the ¢-th component of x, for / =1,...,12,

and [a/]; denotes a 12 x 12 matrix whose £-th column is a; € R12.
We will now show how to compute the 3 x 3 matrices dR/dx’, for
¢=1,...,12. To perform the simulation, one then evaluates K using
Equation 3, and uses it for implicit (backward Euler) integration.

3 Gradients of tet rotation

‘We compute the rotation gradients using the chain rule
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In order to avoid the tensor notation in Equation 4, we have un-
rolled the entries of R and F into 9-vectors, using (say) row-major
notation. Then, the first factor dR/JF in Equation 4 is a 9 X 9 ma-
trix, whereas the second factor dF /dx and the product dR/Jdx are

9 x 12 matrices. In Equation 3, we need the term dR/dx’, which is
the ¢-th column of dR/dx, rolled into a 3 x 3 matrix.

Factor dF /dx is block-sparse, and follows from Equation 1,
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where n; € R? contains the first three entries of the i-th row of V1.

Gradients of polar decomposition have been derived in [Barbi¢ and
Zhao 2011] and [McAdams et al. 2011], and we use them to derive
JR/JF, as follows. For i,j =1,2,3, let F;; denote the entry of
F in i-th row and j-th column. Then, we can define a mapping
f,‘ j ‘R— R?’X?’,

F,-j(s):F-i-seieJT, 6)

where ¢; € R3 is the i-th standard basis vector, s € R is a scalar,
and F is kept constant. For any s, polar decomposition gives
Fij(s) = Rij(5)S;j(s). Note that for s = 0, this decomposition has
been already computed, F = RS; for other values of s, it is only
needed as a mathematical concept. For such a 1D family of polar

decompositions, it follows [Barbi¢ and Zhao 2011]
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where @;; € IR3 is the solution to

Gw;j = 25kew(RTe,~eT ),

T, for G=(w(S)I-S)RT e R¥3. (8)

Here, given a vector a € R, & denotes the unique skew-symmetric
matrix with the property dy = a x y, for all y € R3. For a matrix
A € R¥3, skew(A) € R? denotes the unique vector corresponding
to its skew-symmetric part (A —AT)/2, i.e., skew(d) = a. Matrix
G € R3*3 needs to be formed and inverted only once for each F.
We then compute JR/JF;; using Equations 8 and 7.

Notes: Our implementation is available in Vega FEM [Barbi¢
et al. 2012]. A similar K has been computed by [Chao et al. 2010]
(tet meshes), and by [McAdams et al. 2011] (hexahedral meshes).
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