Exact Corotational Linear FEM Stiffness Matrix

Jernej Barbič

Technical Report, University of Southern California, 2012

Abstract

This technical report gives the exact corotational linear FEM stiffness matrix for a linear tetrahedral element. The matrix is obtained by computing the higher-order terms (corrections) originating because the element rotation varies with the tet deformation.

1 Introduction

Let $m_1, m_2, m_3, m_4 \in \mathbb{R}^3$ be the vertices of a tet in the undeformed configuration, and let $x_1, x_2, x_3, x_4 \in \mathbb{R}^3$ be their positions in the deformed configuration. The deformation gradient $F \in \mathbb{R}^{3 \times 3}$ of the tet equals the upper-left 3×3 block of the 4×4 matrix PV^{-1} [Müller and Gross 2004], where

$$P = \left[\begin{array}{cccc} x_1 & x_2 & x_3 & x_4 \\ 1 & 1 & 1 & 1 \end{array} \right], \quad V = \left[\begin{array}{cccc} m_1 & m_2 & m_3 & m_4 \\ 1 & 1 & 1 & 1 \end{array} \right].$$
 (1

Polar decomposition on F gives F=RS, where R is orthonormal, and S is symmetric. The corotational FEM elastic forces $f=[f_1^T,f_2^T,f_3^T,f_4^T]^T\in\mathbb{R}^{12}$ on the tet vertices equal

$$f = \hat{R}K_{\text{rest}}(\hat{R}^T x - m), \tag{2}$$

where $K_{\text{rest}} \in \mathbb{R}^{12 \times 12}$ is the element stiffness matrix in the rest configuration, and we have assembled $m = [m_1^T, m_2^T, m_3^T, m_4^T]^T$ and $x = [x_1^T, x_2^T, x_3^T, x_4^T]^T$. Given any 3×3 matrix A, we will use the hat notation \hat{A} to denote the 12×12 block-diagonal matrix with four diagonal 3×3 blocks A.

2 Exact tangent stiffness matrix

For implicit integration, it is necessary to compute the gradient of f with respect to x, the tangent stiffness matrix K = df/dx. This matrix is traditionally approximated [Müller and Gross 2004] as $\hat{R}K_{\text{rest}}\hat{R}^T$, where K_{rest} is the linear FEM stiffness matrix. However, because F is a function of x, so is R, and therefore the exact tangent stiffness matrix incorporates two additional terms:

$$K = \hat{R}K_{\text{rest}}\hat{R}^T + \left[\frac{\widehat{\partial R}}{\partial x^{\ell}}K_{\text{rest}}(\hat{R}^Tx - m)\right]_{\ell} + \left[\hat{R}K_{\text{rest}}\frac{\widehat{\partial R}}{\partial x^{\ell}}x\right]_{\ell}, \quad (3)$$

where $x^{\ell} \in \mathbb{R}$ denotes the ℓ -th component of x, for $\ell = 1, \dots, 12$, and $[a_{\ell}]_{\ell}$ denotes a 12×12 matrix whose ℓ -th column is $a_{\ell} \in \mathbb{R}^{12}$. We will now show how to compute the 3×3 matrices $\partial R/\partial x^{\ell}$, for $\ell = 1, \dots, 12$. To perform the simulation, one then evaluates K using Equation 3, and uses it for implicit (backward Euler) integration.

3 Gradients of tet rotation

We compute the rotation gradients using the chain rule

$$\frac{\partial R}{\partial x} = \frac{\partial R}{\partial F} \frac{\partial F}{\partial x}.$$
 (4)

In order to avoid the tensor notation in Equation 4, we have unrolled the entries of R and F into 9-vectors, using (say) row-major notation. Then, the first factor $\partial R/\partial F$ in Equation 4 is a 9×9 matrix, whereas the second factor $\partial F/\partial x$ and the product $\partial R/\partial x$ are

 9×12 matrices. In Equation 3, we need the term $\partial R/\partial x^{\ell}$, which is the ℓ -th column of $\partial R/\partial x$, rolled into a 3×3 matrix.

Factor $\partial F/\partial x$ is block-sparse, and follows from Equation 1,

$$\frac{\partial F}{\partial x} = \begin{bmatrix} n_1 & 0 & 0 & n_2 & 0 & 0 & n_3 & 0 & 0 & n_4 & 0 & 0 \\ 0 & n_1 & 0 & 0 & n_2 & 0 & 0 & n_3 & 0 & 0 & n_4 & 0 \\ 0 & 0 & n_1 & 0 & 0 & n_2 & 0 & 0 & n_3 & 0 & 0 & n_4 \end{bmatrix},$$
(5)

where $n_i \in \mathbb{R}^3$ contains the first three entries of the *i*-th row of V^{-1} .

Gradients of polar decomposition have been derived in [Barbič and Zhao 2011] and [McAdams et al. 2011], and we use them to derive $\partial R/\partial F$, as follows. For i,j=1,2,3, let F_{ij} denote the entry of F in i-th row and j-th column. Then, we can define a mapping $\overline{F}_{ij}: \mathbb{R} \to \mathbb{R}^{3\times 3}$,

$$\overline{F}_{ij}(s) = F + s e_i e_i^T, \tag{6}$$

where $e_i \in \mathbb{R}^3$ is the *i*-th standard basis vector, $s \in \mathbb{R}$ is a scalar, and F is kept constant. For any s, polar decomposition gives $\overline{F}_{ij}(s) = R_{ij}(s)S_{ij}(s)$. Note that for s = 0, this decomposition has been already computed, F = RS; for other values of s, it is only needed as a mathematical concept. For such a 1D family of polar decompositions, it follows [Barbič and Zhao 2011]

$$\frac{\partial R}{\partial F_{ij}} = R'_{ij}(s)_{|s=0} = \widetilde{\omega_{ij}}R,\tag{7}$$

where $\omega_{ij} \in \mathbb{R}^3$ is the solution to

$$G\omega_{ij} = 2\operatorname{skew}(R^T e_i e_j^T), \quad \text{for} \quad G = (\operatorname{tr}(S)I - S)R^T \in \mathbb{R}^{3 \times 3}.$$
 (8)

Here, given a vector $a \in \mathbb{R}^3$, \tilde{a} denotes the unique skew-symmetric matrix with the property $\tilde{a}y = a \times y$, for all $y \in \mathbb{R}^3$. For a matrix $A \in \mathbb{R}^{3 \times 3}$, skew $(A) \in \mathbb{R}^3$ denotes the unique vector corresponding to its skew-symmetric part $(A - A^T)/2$, i.e., skew $(\tilde{a}) = a$. Matrix $G \in \mathbb{R}^{3 \times 3}$ needs to be formed and inverted only once for each F. We then compute $\partial R/\partial F_{ij}$ using Equations 8 and 7.

Notes: Our implementation is available in Vega FEM [Barbič et al. 2012]. A similar *K* has been computed by [Chao et al. 2010] (tet meshes), and by [McAdams et al. 2011] (hexahedral meshes).

References

BARBIČ, J., AND ZHAO, Y. 2011. Real-time large-deformation substructuring. *ACM Trans. on Graphics (SIGGRAPH 2011) 30*, 4, 91:1–91:7.

BARBIČ, J., SIN, F. S., AND SCHROEDER, D., 2012. Vega FEM Library. http://www.jernejbarbic.com/vega.

CHAO, I., PINKALL, U., SANAN, P., AND SCHRÖDER, P. 2010. A Simple Geometric Model for Elastic Deformations. *ACM Transactions on Graphics* 29, 3, 38:1–38:6.

MCADAMS, A., ZHU, Y., SELLE, A., EMPEY, M., TAMSTORF, R., TERAN, J., AND SIFAKIS, E. 2011. Efficient elasticity for character skinning with contact and collisions. *ACM Trans. on Graphics (SIGGRAPH 2011) 30*, 4, 37:1–37:12.

MÜLLER, M., AND GROSS, M. 2004. Interactive Virtual Materials. In *Proc. of Graphics Interface 2004*, 239–246.