
Exact Corotational Linear FEM Stiffness Matrix

Jernej Barbič
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Abstract

This technical report gives the exact corotational linear FEM stiff-
ness matrix for a linear tetrahedral element. The matrix is obtained
by computing the higher-order terms (corrections) originating be-
cause the element rotation varies with the tet deformation.

1 Introduction
Let m1,m2,m3,m4 ∈ R3 be the vertices of a tet in the undeformed
configuration, and let x1,x2,x3,x4 ∈R3 be their positions in the de-
formed configuration. The deformation gradient F ∈R3×3 of the tet
equals the upper-left 3×3 block of the 4×4 matrix PV−1 [Müller
and Gross 2004], where

P =
[

x1 x2 x3 x4
1 1 1 1

]
, V =

[
m1 m2 m3 m4
1 1 1 1

]
.

(1)
Polar decomposition on F gives F = RS, where R is orthonor-
mal, and S is symmetric. The corotational FEM elastic forces
f = [ f T

1 , f T
2 , f T

3 , f T
4 ]T ∈ R12 on the tet vertices equal

f = R̂Krest(R̂T x−m), (2)

where Krest ∈ R12×12 is the element stiffness matrix in the rest
configuration, and we have assembled m = [mT

1 ,mT
2 ,mT

3 ,mT
4 ]T and

x = [xT
1 ,xT

2 ,xT
3 ,xT

4 ]T . Given any 3×3 matrix A, we will use the hat
notation Â to denote the 12× 12 block-diagonal matrix with four
diagonal 3×3 blocks A.

2 Exact tangent stiffness matrix

For implicit integration, it is necessary to compute the gradient of
f with respect to x, the tangent stiffness matrix K = d f /dx. This
matrix is traditionally approximated [Müller and Gross 2004] as
R̂KrestR̂T , where Krest is the linear FEM stiffness matrix. However,
because F is a function of x, so is R, and therefore the exact tangent
stiffness matrix incorporates two additional terms:

K = R̂KrestR̂T +
[ ∂̂R

∂x`
Krest

(
R̂T x−m

)]
` +

[
R̂Krest

∂̂R
∂x`

T

x
]
`, (3)

where x` ∈ R denotes the `-th component of x, for ` = 1, . . . ,12,
and [a`]` denotes a 12×12 matrix whose `-th column is a` ∈ R12.

We will now show how to compute the 3×3 matrices ∂R/∂x`, for
` = 1, . . . ,12. To perform the simulation, one then evaluates K using
Equation 3, and uses it for implicit (backward Euler) integration.

3 Gradients of tet rotation

We compute the rotation gradients using the chain rule

∂R
∂x

=
∂R
∂F

∂F
∂x

. (4)

In order to avoid the tensor notation in Equation 4, we have un-
rolled the entries of R and F into 9-vectors, using (say) row-major
notation. Then, the first factor ∂R/∂F in Equation 4 is a 9×9 ma-
trix, whereas the second factor ∂F/∂x and the product ∂R/∂x are

9×12 matrices. In Equation 3, we need the term ∂R/∂x`, which is
the `-th column of ∂R/∂x, rolled into a 3×3 matrix.

Factor ∂F/∂x is block-sparse, and follows from Equation 1,

∂F
∂x

=

 n1 0 0 n2 0 0 n3 0 0 n4 0 0
0 n1 0 0 n2 0 0 n3 0 0 n4 0
0 0 n1 0 0 n2 0 0 n3 0 0 n4

 ,

(5)
where ni ∈R3 contains the first three entries of the i-th row of V−1.

Gradients of polar decomposition have been derived in [Barbič and
Zhao 2011] and [McAdams et al. 2011], and we use them to derive
∂R/∂F , as follows. For i, j = 1,2,3, let Fi j denote the entry of
F in i-th row and j-th column. Then, we can define a mapping
F i j : R→ R3×3,

F i j(s) = F + seieT
j , (6)

where ei ∈ R3 is the i-th standard basis vector, s ∈ R is a scalar,
and F is kept constant. For any s, polar decomposition gives
F i j(s) = Ri j(s)Si j(s). Note that for s = 0, this decomposition has
been already computed, F = RS; for other values of s, it is only
needed as a mathematical concept. For such a 1D family of polar
decompositions, it follows [Barbič and Zhao 2011]

∂R
∂Fi j

= R′i j(s)|s=0 = ω̃i jR, (7)

where ωi j ∈ R3 is the solution to

Gωi j = 2skew(RT eieT
j ), for G =

(
tr(S)I−S

)
RT ∈ R3×3. (8)

Here, given a vector a ∈ R3, ã denotes the unique skew-symmetric
matrix with the property ãy = a× y, for all y ∈ R3. For a matrix
A ∈ R3×3, skew(A) ∈ R3 denotes the unique vector corresponding
to its skew-symmetric part (A−AT )/2, i.e., skew(ã) = a. Matrix
G ∈ R3×3 needs to be formed and inverted only once for each F.
We then compute ∂R/∂Fi j using Equations 8 and 7.

Notes: Our implementation is available in Vega FEM [Barbič
et al. 2012]. A similar K has been computed by [Chao et al. 2010]
(tet meshes), and by [McAdams et al. 2011] (hexahedral meshes).
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