The Jello Cube
Assignment 1, CS599, Spring 2011

Jernej Barbic, USC
The jello cube

- The jello cube is elastic,
- Can be bent, stretched, squeezed, …,
- Without external forces, it eventually restores to the original shape.
Mass-Spring System

- Several mass points
- Connected to each other by springs
- Springs expand and stretch, exerting force on the mass points
- Very often used to simulate cloth
- Examples:
 - A 2-particle spring system
 - Another 2-particle example
 - Cloth animation example
Newton’s Laws

• Newton’s 2nd law:

\[\vec{F} = m\vec{a} \]

• Tells you how to compute acceleration, given the force and mass

• Newton’s 3rd law: If object A exerts a force F on object B, then object B is at the same time exerting force $-F$ on A.
Single spring

- Obeys the *Hook’s law*:
 \[F = k (x - x_0) \]
- \(x_0 \) = rest length
- \(k \) = spring elasticity (aka stiffness)
- For \(x < x_0 \), spring wants to extend
- For \(x > x_0 \), spring wants to contract
Hook’s law in 3D

• Assume A and B two mass points connected with a spring.
• Let L be the vector pointing from B to A
• Let R be the spring rest length
• Then, the elastic force exerted on A is:

\[\vec{F} = -k_{\text{Hook}} \left(|\vec{L}| - R \right) \frac{\vec{L}}{|\vec{L}|} \]
Damping

- Springs are not completely elastic
- They absorb some of the energy and tend to decrease the velocity of the mass points attached to them
- Damping force depends on the velocity:

\[\vec{F} = -k_d \vec{v} \]

- \(k_d \) = damping coefficient
- \(k_d \) different than \(k_{\text{Hook}} \)!!
Damping in 3D

- Assume A and B two mass points connected with a spring.
- Let \mathbf{L} be the vector pointing from B to A.
- Then, the damping force exerted on A is:

$$
\mathbf{F} = -k_d \frac{(\mathbf{v}_A - \mathbf{v}_B) \cdot \mathbf{L}}{|\mathbf{L}|} \frac{\mathbf{L}}{|\mathbf{L}|}
$$

- Here \mathbf{v}_A and \mathbf{v}_B are velocities of points A and B.
- Damping force always OPPOSES the motion.
A network of springs

- Every mass point connected to some other points by springs
- Springs exert forces on mass points
 - Hook’s force
 - Damping force
- Other forces
 - External force field
 » Gravity
 » Electrical or magnetic force field
 - Collision force
How to organize the network (for jello cube)

- To obtain stability, must organize the network of springs in some clever way
- Jello cube is a 8x8x8 mass point network
- 512 discrete points
- Must somehow connect them with springs

Basic network Stable network Network out of control
Solution: Structural, Shear and Bend Springs

- There will be three types of springs:
 - Structural
 - Shear
 - Bend
- Each has its own function
Structural springs

- Connect every node to its 6 direct neighbours
- Node (i,j,k) connected to:
 - (i+1,j,k), (i-1,j,k), (i,j-1,k), (i,j+1,k), (i,j,k-1), (i,j,k+1)
 (for surface nodes, some of these neighbors might not exist)
- Structural springs establish the basic structure of the jello cube
- The picture shows structural springs for the jello cube. Only springs connecting two surface vertices are shown.
Shear springs

- Disallow excessive shearing
- Prevent the cube from distorting
- Every node (i,j,k) connected to its diagonal neighbors
- Structural springs = white
- Shear springs = red

Shear spring (red) resists stretching and thus prevents shearing

A 3D cube
(if you can’t see it immediately, keep trying)
Bend springs

- Prevent the cube from folding over
- Every node connected to its second neighbor in every direction (6 connections per node, unless surface node)
- white=structural springs
- yellow=bend springs (shown for a single node only)

Bend spring (yellow) resists contracting and thus prevents bending
External force field

- If there is an external force field, add that force to the sum of all the forces on a mass point

\[
\vec{F}_{\text{total}} = \vec{F}_{\text{Hook}} + \vec{F}_{\text{damping}} + \vec{F}_{\text{force field}}
\]

- There is one such equation for every mass point and for every moment in time
Collision detection

• The movement of the jello cube is limited to a bounding box

• Collision detection easy:
 – Check all the vertices if any of them is outside the box

• Inclined plane:
 – Equation: \[F(x, y, z) = ax + by + cz + d = 0 \]
 – Initially, all points on the same side of the plane
 – \(F(x,y,z) > 0 \) on one side of the plane and \(F(x,y,z) < 0 \) on the other
 – Can check all the vertices for this condition
Collision response

- When collision happens, must perform some action to prevent the object penetrating even deeper
- Object should bounce away from the colliding object
- Some energy is usually lost during the collision
- Several ways to handle collision response
- We will use the *penalty method*
The penalty method

- When collision happens, put an artificial collision spring at the point of collision, which will push the object backwards and away from the colliding object.
- Collision springs have elasticity and damping, just like ordinary springs.
Penalty force

- Direction is normal to the contact surface
- Magnitude is proportional to the amount of penetration
- Collision spring rest length is zero
Integrators

- Network of mass points and springs
- Hook’s law, damping law and Newton’s 2nd law give acceleration of every mass point at any given time
- \(F = ma \)
 - Hook’s law and damping provide \(F \)
 - ‘\(m \)’ is point mass
 - The value for \(a \) follows from \(F = ma \)
- Now, we know acceleration at any given time for any point
- Want to compute the actual motion
Integrators (contd.)

- The equations of motion:

\[
\frac{dx}{dt} = \vec{v} \\
\frac{d^2x}{dt^2} = \frac{d\vec{v}}{dt} = \ddot{a}(t) = \frac{1}{m} \left(\vec{F}_{\text{Hook}} + \vec{F}_{\text{damping}} + \vec{F}_{\text{force field}} \right)
\]

- \(x \) = point position, \(v \) = point velocity, \(a \) = point acceleration
- They describe the movement of any single mass point
- \(F_{\text{Hook}} \) = sum of all Hook forces on a mass point
- \(F_{\text{damping}} \) = sum of all damping forces on a mass point
Integrators (contd.)

• When we put these equations together for all the mass points, we obtain a system of ordinary differential equations.
• In general, impossible to solve analytically
• Must solve numerically
• Methods to solve such systems numerically are called integrators
• Most widely used:
 – Euler
 – Runge-Kutta 2nd order (aka the midpoint method) (RK2)
 – Runge-Kutta 4th order (RK4)
Integrator design issues

- **Numerical stability**
 - If time step too big, method “explodes”
 - $t = 0.001$ is a good starting choice for the assignment
 - Euler much more unstable than RK2 or RK4
 » Requires smaller time-step, but is simple and hence fast
 - Euler rarely used in practice

- **Numerical accuracy**
 - Smaller time steps means more stability and accuracy
 - But also means more computation

- **Computational cost**
 - Tradeoff: accuracy vs computation time
Integrators (contd.)

• RK4 is often the method of choice
• RK4 very popular for engineering applications
• The time step should be inversely proportional to the square root of the elasticity k [Courant condition]
• For the assignment, we provide the integrator routines (Euler, RK4)
 – void Euler(struct world * jello);
 – void RK4(struct world * jello);
 – Calls to there routines make the simulation progress one time-step further.
 – State of the simulation stored in ‘jello’ and automatically updated
Tips

• Use double precision for all calculations (double)
• Do not overstretch the z-buffer
 – It has finite precision
 – Ok: `gluPerspective(90.0,1.0,0.01,1000.0);`
 – Bad: `gluPerspective(90.0,1.0,0.0001,100000.0);`
• Choosing the right elasticity and damping parameters is an art
 – Trial and error
 – For a start, can set the ordinary and collision parameters the same
• Read the webpage for updates