The Jello Cube
Assignment 1, CS599, Spring 2010
The jello cube

- The jello cube is elastic,
- Can be bent, stretched, squeezed, …,
- Without external forces, it eventually restores to the original shape.
Mass-Spring System

- Several mass points
- Connected to each other by springs
- Springs expand and stretch, exerting force on the mass points
- Very often used to simulate cloth
- Examples:
 - A 2-particle spring system
 - Another 2-particle example
 - Cloth animation example
Newton’s Laws

• Newton’s 2nd law:

\[\vec{F} = m\vec{a} \]

• Tells you how to compute acceleration, given the force and mass

• Newton’s 3rd law: If object A exerts a force F on object B, then object B is at the same time exerting force $-F$ on A.
Single spring

- Obeys the *Hook’s law*:
 \[F = k (x - x_0) \]
- \(x_0 \) = rest length
- \(k \) = spring elasticity (aka stiffness)
- For \(x < x_0 \), spring wants to extend
- For \(x > x_0 \), spring wants to contract
Hook’s law in 3D

- Assume A and B two mass points connected with a spring.
- Let \(\vec{L} \) be the vector pointing from B to A
- Let \(R \) be the spring rest length
- Then, the elastic force exerted on A is:

\[
\vec{F} = -k_{\text{Hook}} \left(|\vec{L}| - R \right) \frac{\vec{L}}{|\vec{L}|}
\]
Damping

- Springs are not completely elastic
- They absorb some of the energy and tend to decrease the velocity of the mass points attached to them
- Damping force depends on the velocity:

\[\vec{F} = -k_d \vec{\dot{v}} \]

- \(k_d = \) damping coefficient
- \(k_d \) different than \(k_{\text{Hook}} \)
Damping in 3D

- Assume A and B two mass points connected with a spring.
- Let \(\vec{L} \) be the vector pointing from B to A
- Then, the damping force exerted on A is:

\[
\vec{F} = -k_d \frac{(\vec{v}_A - \vec{v}_B) \cdot \vec{L}}{|\vec{L}|} \frac{\vec{L}}{|\vec{L}|}
\]

- Here \(\vec{v}_A \) and \(\vec{v}_B \) are velocities of points A and B
- Damping force always OPPOSES the motion
A network of springs

- Every mass point connected to some other points by springs
- Springs exert forces on mass points
 - Hook’s force
 - Damping force
- Other forces
 - External force field
 - Gravity
 - Electrical or magnetic force field
 - Collision force
How to organize the network (for jello cube)

- To obtain stability, must organize the network of springs in some clever way
- Jello cube is a 8x8x8 mass point network
- 512 discrete points
- Must somehow connect them with springs
Solution:
Structural, Shear and Bend Springs

- There will be three types of springs:
 - Structural
 - Shear
 - Bend

- Each has its own function
Structural springs

• Connect every node to its 6 direct neighbours
• Node (i,j,k) connected to
 – (i+1,j,k), (i-1,j,k), (i,j-1,k), (i,j+1,k), (i,j,k-1), (i,j,k+1)
 (for surface nodes, some of these neighbors might not exists)
• Structural springs establish the basic structure of the jello cube
• The picture shows structural springs for the jello cube. Only springs connecting two surface vertices are shown.
Shear springs

- Disallow excessive shearing
- Prevent the cube from distorting
- Every node (i,j,k) connected to its diagonal neighbors
- Structural springs = white
- Shear springs = red

Shear spring (red) resists stretching and thus prevents shearing
Bend springs

- Prevent the cube from folding over
- Every node connected to its second neighbor in every direction (6 connections per node, unless surface node)
- white=structural springs
- yellow=bend springs (shown for a single node only)

Bend spring (yellow) resists contracting and thus prevents bending
External force field

• If there is an external force field, add that force to the sum of all the forces on a mass point

\[\vec{F}_{\text{total}} = \vec{F}_{\text{Hook}} + \vec{F}_{\text{damping}} + \vec{F}_{\text{force field}} \]

• There is one such equation for every mass point and for every moment in time
Collision detection

• The movement of the jello cube is limited to a bounding box
• Collision detection easy:
 – Check all the vertices if any of them is outside the box
• Inclined plane:
 – Equation:
 \[F(x, y, z) = ax + by + cz + d = 0 \]
 – Initially, all points on the same side of the plane
 – \(F(x, y, z) > 0 \) on one side of the plane and \(F(x, y, z) < 0 \) on the other
 – Can check all the vertices for this condition
Collision response

- When collision happens, must perform some action to prevent the object penetrating even deeper
- Object should bounce away from the colliding object
- Some energy is usually lost during the collision
- Several ways to handle collision response
- We will use the *penalty method*
The penalty method

• When collision happens, put an artificial *collision spring* at the point of collision, which will push the object backwards and away from the colliding object

• Collision springs have elasticity and damping, just like ordinary springs
Integrators

• Network of mass points and springs
• Hook’s law, damping law and Newton’s 2nd law give acceleration of every mass point at any given time
• \(F = ma \)
 – Hook’s law and damping provide \(F \)
 – ‘\(m \)’ is point mass
 – The value for \(a \) follows from \(F = ma \)
• Now, we know acceleration at any given time for any point
• Want to compute the actual motion
Integrators (contd.)

• The equations of motion:

\[
\frac{dx}{dt} = v
\]

\[
\frac{d^2x}{dt^2} = \frac{dv}{dt} = a(t) = \frac{1}{m} (F_{\text{Hook}} + F_{\text{damping}} + F_{\text{force field}})
\]

• \(x\) = point position, \(v\) = point velocity, \(a\) = point acceleration
• They describe the movement of any single mass point
• \(F_{\text{Hook}}\) = sum of all Hook forces on a mass point
• \(F_{\text{damping}}\) = sum of all damping forces on a mass point
Integrators (contd.)

• When we put these equations together for all the mass points, we obtain a system of ordinary differential equations.

• In general, impossible to solve analytically

• Must solve numerically

• Methods to solve such systems numerically are called integrators

• Most widely used:
 – Euler
 – Runge-Kutta 2nd order (aka the midpoint method) (RK2)
 – Runge-Kutta 4th order (RK4)
Integrator design issues

• Numerical stability
 – If time step too big, method “explodes”
 – \(t = 0.001 \) is a good starting choice for the assignment
 – Euler much more unstable than RK2 or RK4
 » Requires smaller time-step, but is simple and hence fast
 – Euler rarely used in practice

• Numerical accuracy
 – Smaller time steps means more stability and accuracy
 – But also means more computation

• Computational cost
 – Tradeoff: accuracy vs computation time
Integrators (contd.)

- RK4 is often the method of choice
- RK4 very popular for engineering applications
- The time step should be inversely proportional to the square root of the elasticity k \([\text{Courant condition}]\)
- For the assignment, we provide the integrator routines (Euler, RK4)
 - `void Euler(struct world * jello);`
 - `void RK4(struct world * jello);`
 - Calls to these routines make the simulation progress one time-step further.
 - State of the simulation stored in ‘jello’ and automatically updated
Tips

• Use double precision for all calculations (double)
• Do not overstretch the z-buffer
 – It has finite precision
 – Ok: gluPerspective(90.0,1.0,0.01,1000.0);
 – Bad: gluPerspective(90.0,1.0,0.0001,100000.0);
• Choosing the right elasticity and damping parameters is an art
 – Trial and error
 – For a start, can set the ordinary and collision parameters the same
• Read the webpage for updates