References

- Additional lecture notes for 2/18/02.

Geometric Proximity Queries

- Given two objects, how would you check:

 - If they intersect with each other while moving?
 - If they do not interpenetrate each other, how far are they apart?
 - If they overlap, how much is the amount of penetration?
Collision Detection

• Update configurations w/ TXF matrices

• Check for edge-edge intersection in 2D
 (Check for edge-face intersection in 3D)

• Check every point of A inside of B & every point of B inside of A

• Check for pair-wise edge-edge intersections

Imagine larger input size: \(N = 1000+ \) ……
Classes of Objects & Problems

- 2D vs. 3D
- Convex vs. Non-Convex
- Polygonal vs. Non-Polygonal
- Open surfaces vs. Closed volumes
- Geometric vs. Volumetric
- Rigid vs. Non-rigid (deformable/flexible)
- Pairwise vs. Multiple (N-Body)
- CSG vs. B-Rep
- Static vs. Dynamic

And so on... This may include other geometric representation schemata, etc.
Some Possible Approaches

• Geometric methods
• Algebraic Techniques
• Hierarchical Bounding Volumes
• Spatial Partitioning
• Others (e.g. optimization)
Voronoi Diagrams

- Given a set S of n points in R^2, for each point p_i in S, there is the set of points (x, y) in the plane that are closer to p_i than any other point in S, called Voronoi polygons. The collection of n Voronoi polygons given the n points in the set S is the "Voronoi diagram", $Vor(S)$, of the point set S.

Intuition: To partition the plane into regions, each of these is the set of points that are closer to a point p_i in S than any other. The partition is based on the set of closest points, e.g. bisectors that have 2 or 3 closest points.
Generalized Voronoi Diagrams

- The extension of the Voronoi diagram to higher dimensional features (such as edges and facets, instead of points); i.e. the set of points closest to a feature, e.g. that of a polyhedron.

- **FACTS:**
 - In general, the generalized Voronoi diagram has quadratic surface boundaries in it.
 - If the polyhedron is convex, then its generalized Voronoi diagram has planar boundaries.
A **Voronoi region** associated with a **feature** is a set of points that are closer to that feature than any other.

FACTS:
- The Voronoi regions form a partition of space outside of the polyhedron according to the closest feature.
- The collection of Voronoi regions of each polyhedron is the generalized Voronoi diagram of the polyhedron.
- The generalized Voronoi diagram of a convex polyhedron has linear size and consists of polyhedral regions. And, all Voronoi regions are convex.
Voronoi Marching

Basic Ideas:

- **Coherence**: local geometry does not change much, when computations repetitively performed over successive small time intervals
- **Locality**: to *track* the pair of closest features between 2 moving convex polygons (polyhedra) w/ Voronoi regions
- **Performance**: expected **constant** running time, independent of the geometric complexity
Objects A & B and their Voronoi regions: P1 and P2 are the pair of closest points between A and B. Note P1 and P2 lie within the Voronoi regions of each other.
Basic Idea for Voronoi Marching
Linear Programming

In general, a d-dimensional linear programming (or linear optimization) problem may be posed as follows:

- Given a finite set A in \mathbb{R}^d
- For each a in A, a constant K_a in \mathbb{R}, c in \mathbb{R}^d
- Find x in \mathbb{R}^d which minimize $\langle x, c \rangle$
- Subject to $\langle a, x \rangle \geq K_a$, for all a in A.

where $\langle *, * \rangle$ is standard inner product in \mathbb{R}^d.
LP for Collision Detection

Given two finite sets A, B in R^d
For each a in A and b in B,
Find x in R^d which minimize whatever
Subject to $<a, x> > 0$, for all a in A
And $<b, x> < 0$, for all b in B

where $d = 2$ (or 3).
Minkowski Sums/Differences

- Minkowski Sum \((A, B)\) = \(\{ a + b \mid a \in A, b \in B \}\)

- Minkowski Diff \((A, B)\) = \(\{ a - b \mid a \in A, b \in B \}\)

- \(A\) and \(B\) collide iff Minkowski Difference\((A,B)\) contains the point 0.
Some Minkowski Differences
Minkowski Difference & Translation

- $\text{Minkowski-Diff}(\text{Trans}(A, t_1), \text{Trans}(B, t_2)) = \text{Trans}(\text{Minkowski-Diff}(A,B), t_1 - t_2)$

\Rightarrow $\text{Trans}(A, t_1)$ and $\text{Trans}(B, t_2)$ intersect iff $\text{Minkowski-Diff}(A,B)$ contains point $(t_2 - t_1)$.
Properties

Distance
- distance\((A, B)\) = \(\min_{a \in A, \ b \in B} \| a - b \|_2\)
- distance\((A, B)\) = \(\min_{c \in \text{Minkowski-Diff}(A, B)} \| c \|_2\)
- if \(A\) and \(B\) disjoint, \(c\) is a point on boundary of Minkowski difference

Penetration Depth
- pd\((A, B)\) = \(\min\{ \| t \|_2 \mid A \cap \text{Translated}(B, t) = \emptyset \}\)
- pd\((A, B)\) = \(\min_{t \notin \text{Minkowski-Diff}(A, B)} \| t \|_2\)
- if \(A\) and \(B\) intersect, \(t\) is a point on boundary of Minkowski difference
Practicality

- Expensive to compute boundary of Minkowski difference:
 - For convex polyhedra, Minkowski difference may take $O(n^2)$
 - For general polyhedra, no known algorithm of complexity less than $O(n^6)$ is known
GJK for Computing Distance between Convex Polyhedra

GJK-DistanceToOrigin (P) // dimension is m
1. Initialize \(P_0 \) with \(m+1 \) or fewer points.
2. \(k = 0 \)
3. while (TRUE) {
4. if origin is within \(\text{CH}(P_k) \), return 0
5. else {
6. find \(x \in \text{CH}(P_k) \) closest to origin, and \(S_k \subseteq P_k \) s.t. \(x \in \text{CH}(S_k) \)
7. see if any point \(p-x \) in \(P \) more extremal in direction \(-x\)
8. if no such point is found, return \(|x|\)
9. else {
10. \(P_{k+1} = S_k \cup \{p-x\} \)
11. \(k = k + 1 \)
12. }
13. }
14. }
An Example of GJK
Running Time of GJK

- Each iteration of the while loop requires $O(n)$ time.

- $O(n)$ iterations possible. The authors claimed between 3 to 6 iterations on average for any problem size, making this “expected” linear.

- Trivial $O(n)$ algorithms exist if we are given the boundary representation of a convex object, but GJK will work on point sets - computes CH lazily.
More on GJK

Given $A = \text{CH}(A')$
$A' = \{ a_1, a_2, \ldots, a_n \}$ and
$B = \text{CH}(B')$
$B' = \{ b_1, b_2, \ldots, b_m \}$

- Minkowski-Diff$(A,B) = \text{CH}(P)$,
 $P = \{a - b | a \in A', b \in B'\}$
- Can compute points of P on demand:
 $p_x = a_{-x} - b_x$ where a_{-x} is the point of A' extremal in direction $-x$, and b_x is the point of B' extremal in direction x.
- The loop body would take $O(n + m)$ time, producing the “expected” linear performance overall.
Large, Dynamic Environments

- For dynamic simulation where the velocity and acceleration of all objects are known at each step, use the scheduling scheme (implemented as heap) to prioritize “critical events” to be processed.

- Each object pair is tagged with the estimated time to next collision. Then, each pair of objects is processed accordingly. The heap is updated when a collision occurs.
Scheduling Scheme

- a_{max}: an upper bound on relative acceleration between any two points on any pair of objects.
- a_{lin}: relative absolute linear
- α: relative rotational accelerations
- ω: relative rotational velocities
- r: vector difference btw CoM of two bodies
- d: initial separation for two given objects

\[
a_{\text{max}} = | a_{\text{lin}} + \alpha \times r + \omega \times \omega \times r |
\]

\[
v_i = | v_{\text{lin}} + \omega \times r |
\]

- Estimated Time to collision:

\[
t_c = \left\{ \left(v_i^2 + 2 \ a_{\text{max}} \ d \right)^{1/2} - v_i \right\} / a_{\text{max}}
\]
Collide System Architecture

- Transform
- Sweep & Prune
- Simulation
- Parameters
- Overlap
- Exact Collision Detection
- Analysis & Response
- Collision
Sweep and Prune

- Compute the axis-aligned bounding box (fixed vs. dynamic) for each object
- Dimension Reduction by projecting boxes onto each x, y, z-axis
- Sort the endpoints and find overlapping intervals
- Possible collision -- only if projected intervals overlap in all 3 dimensions
Sweep & Prune

\[T = 1 \]

\[T = 2 \]
Updating Bounding Boxes

- **Coherence** (greedy algorithm)
- **Convexity properties** (geometric properties of convex polytopes)
- **Nearly constant time**, if the motion is relatively “small”
Use of Sorting Methods

- **Initial sort** -- quick sort runs in $O(m \log m)$ just as in any ordinary situation

- **Updating** -- insertion sort runs in $O(m)$ due to coherence. We sort an almost sorted list from last stimulation step. In fact, we look for “swap” of positions in all 3 dimension.
Implementation Issues

- Collision matrix -- basically adjacency matrix
- Enlarge bounding volumes with some tolerance threshold
- Quick start polyhedral collision test -- using bucket sort & look-up table