CSCI 480 Computer Graphics
Lecture 24

Non-Photorealistic Rendering

Goals of Computer Graphics:

• Traditional: Photorealism
• Sometimes, we want more
 – Cartoons
 – Artistic expression in paint, pen-and-ink
 – Technical illustrations
 – Scientific visualization
 [Lecture next week]

Pen-and-ink Illustrations
Painterly Rendering
Cartoon Shading
Technical Illustrations

Non-Photorealistic Rendering

“A means of creating imagery that does not aspire to realism” - Stuart Green

Some NPR Categories

• Pen-and-Ink illustration
 – Techniques: cross-hatching, outlines, line art, etc.
• Painterly rendering
 – Styles: impressionist, expressionist, pointillist, etc.
• Cartoons
 – Effects: cartoon shading, distortion, etc.
• Technical illustrations
 – Characteristics: Matte shading, edge lines, etc.
• Scientific visualization
 – Methods: splatting, hedgehogs, etc.

Outlook

• Pen-and-Ink Illustrations
• Painterly Rendering
• Cartoon Shading
• Technical Illustrations
Hue
- Perception of “distinct” colors by humans
- Red
- Green
- Blue
- Yellow

Tone
- Perception of “brightness” of a color by humans
- Also called lightness
- Important in NPR

Pen-and-Ink Illustrations
- Strokes – Curved lines of varying thickness and density
- Texture – Conveyed by collection of strokes
- Tone – Perceived gray level across image or segment
- Outline – Boundary lines that disambiguate structure

Rendering Pipeline:
- 3D Model
- Lighting
- Visible Polygons
- Procedural Stroke Texture
- Stroke Clipping
- Outline Drawing
- Camera

Strokes and Stroke Textures
- Stroke generated by moving along straight path
- Stroke perturbed by
 - Waviness function (straightness)
 - Pressure function (thickness)
- Collected in stroke textures
 - Tone dependent
 - Resolution dependent
 - Orientation dependent
- How automatic are stroke textures?
Stroke Texture Examples

Stroke Texture Operations

Indication

- Selective addition of detail
- Difficult to automate
- User places detail segments interactively

Indication Example

Outlines

- Boundary or interior outlines
- Accented outlines for shadowing and relief
- Dependence on viewing direction
- Suggest shadow direction

Rendering Parametric Surfaces

- Stroke orientation and density
- Place strokes along isoparametric lines
- Choose density for desired tone
- $\text{tone} = \text{width} / \text{spacing}$
Parametric Surface Example

Winkenbach and Salesin 1996

Hatching + standard rendering

- Constant-density hatching
- Longer smoother strokes for glass
- Varying reflection coefficient
- Smooth shading with single light
- Environment mapping

Standard rendering techniques are still important!

Orientable Textures

- Inputs
 - Grayscale image to specify desired tone
 - Direction field
 - Stroke character
- Output
 - Stroke shaded image

Salisbury et al. 1997

Orientable Stroke Texture Example

Salisbury et al. 1997

Outline

- Pen-and-Ink Illustrations
- Painterly Rendering
- Cartoon Shading
- Technical Illustrations

Painterly Rendering

- Physical simulation
 - User applies brushstrokes
 - Computer simulates media (paper + ink)
- Automatic painting
 - User provides input image or 3D model
 - User specifies painting parameters
 - Computer generates all strokes
Physical Simulation Example

Curtis et al. 1997, Computer Generated Watercolor

Computer-Generated Watercolor

• Complex physical phenomena for artistic effect
• Build simple approximations
• Paper generation as random height field
 • Simulated effects

Fluid Dynamic Simulation

• Use water velocity, viscosity, drag, pressure, pigment concentration, paper gradient
• Paper saturation and capacity
 • Discretize and use cellular automata

Interactive Painting

User input
Simulation in progress
Finished painting

Automatic Painting Example

Hertzmann 1997

Automatic Painting from Images

• Start from color image: no 3D information
• Paint in resolution-based layers
 – Blur to current resolution
 – Select brush based on current resolution
 – Find area of largest error compared to real image
 – Place stroke
 – Increase resolution and repeat
• Layers are painted coarse-to-fine
• Styles controlled by parameters
Layered Painting

Adding detail with smaller strokes

Painting Styles

- Style determined by parameters
 - Approximation thresholds
 - Brush sizes
 - Curvature filter
 - Blur factor
 - Minimum and maximum stroke lengths
 - Opacity
 - Grid size
 - Color jitter

- Encapsulate parameter settings as style

Style Examples

Some Styles

- “Impressionist”
 - No random color, 4 ≤ stroke length ≤ 16
 - Brush sizes 8, 4, 2; approximation threshold 100

- “Expressionist”
 - Random factor 0.5, 10 ≤ stroke length ≤ 16
 - Brush sizes 8, 4, 2; approximation threshold 50

- “Pointillist”
 - Random factor ~0.75, 0 ≤ stroke length ≤ 0
 - Brush sizes 4, 2; approximation threshold 100

- Not completely convincing to artists (yet?)

Outline

- Pen-and-Ink Illustrations
- Painterly Rendering
- Cartoon Shading
- Technical Illustrations

Cartoon Shading

- Shading model in 2D cartoon
 - Use material color and shadow color
 - Present lighting cues, shape, and context

- Stylistic
- Used in many animated movies
- Real-time techniques for games

Source: Alec Rivers
Cartoon Shading as Texture Map

- Apply shading as 1D texture map
- Two-pass technique:
 Pass 1: standard shader
 Pass 2: use result from 1 as texture coordinates

Outline

- Pen-and-Ink Illustrations
- Painterly Rendering
- Cartoon Shading
- Technical Illustrations

Technical Illustrations

- Level of abstraction
 - Accent important 3D properties
 - Diminish or eliminate extraneous details
- Do not represent reality

Conventions in Technical Illustrations

- Black edge lines
- Cool to warm shading colors
- Single light source; shadows rarely used
The Future

• Smart graphics
 – Design from the user’s perspective
 – HCI, AI, Perception
• Artistic graphics
 – More tools for the creative artist
 – New styles and ideas

Summary

• Beyond photorealism
 – Artistic appeal
 – Technical explanation and illustration
 – Scientific visualization
• Use all traditional computer graphics tools
• Employ them in novel ways
• Have fun!