CSCI 480 Computer Graphics
Lecture 16

Geometric Queries for Ray Tracing

Ray-Surface Intersection
Barycentric Coordinates
[Ch. 13.2 - 13.3]

Mar 27, 2013
Jernej Barbic
University of Southern California
http://www-bcf.usc.edu/~jbarbic/cs480-s13/

Ray-Surface Intersections
• Necessary in ray tracing
• General implicit surfaces
• General parametric surfaces
• Specialized analysis for special surfaces
 – Spheres
 – Planes
 – Polygons
 – Quadrics

Intersection of Rays and Parametric Surfaces
• Ray in parametric form
 – Origin \(p_0 = [x_0, y_0, z_0]^T \)
 – Direction \(d = [x_d, y_d, z_d]^T \)
 – Assume \(d \) is normalized \((x_d^2 + y_d^2 + z_d^2 = 1)\)
 – Ray \(p(t) = p_0 + d t \) for \(t > 0 \)

• Surface in parametric form
 – Point \(q = g(u, v) \), possible bounds on \(u, v \)
 – Solve \(p + d t = g(u, v) \)
 – Three equations in three unknowns \((t, u, v)\)

Intersection of Rays and Implicit Surfaces
• Ray in parametric form
 – Origin \(p_0 = [x_0, y_0, z_0]^T \)
 – Direction \(d = [x_d, y_d, z_d]^T \)
 – Assume \(d \) normalized \((x_d^2 + y_d^2 + z_d^2 = 1)\)
 – Ray \(p(t) = p_0 + d t \) for \(t > 0 \)

• Implicit surface
 – Given by \(f(q) = 0 \)
 – Consists of all points \(q \) such that \(f(q) = 0 \)
 – Substitute ray equation for \(q \): \(f(p_0 + d t) = 0 \)
 – Solve \(t \) (univariate root finding)
 – Closed form (if possible), otherwise numerical approximation

Ray-Sphere Intersection I
• Common and easy case
• Define sphere by
 – Center \(c = [x_c, y_c, z_c]^T \)
 – Radius \(r \)
 – Surface \(f(q) = (x - x_c)^2 + (y - y_c)^2 + (z - z_c)^2 - r^2 = 0 \)
• Plug in ray equations for \(x, y, z \):
 \(x = x_0 + x_d t \), \(y = y_0 + y_d t \), \(z = z_0 + z_d t \)
• And we obtain a scalar equation for \(t \):
 \((x_0 + x_d t - x_c)^2 + (y_0 + y_d t - y_c)^2 + (z_0 + z_d t - z_c)^2 = r^2\)

Ray-Sphere Intersection II
• Simplify to \(at^2 + bt + c = 0 \)
 where
 \[a = x_d^2 + y_d^2 + z_d^2 = 1 \quad \text{since } |d| = 1 \]
 \[b = 2(x_d(x_0 - x_c) + y_d(y_0 - y_c) + z_d(z_0 - z_c)) \]
 \[c = (x_0 - x_c)^2 + (y_0 - y_c)^2 + (z_0 - z_c)^2 - r^2 \]
• Solve to obtain \(t_0 \) and \(t_1 \)
 \[t_{0,1} = \frac{-b \pm \sqrt{b^2 - 4c}}{2} \]
 Check if \(t_0, t_1 > 0 \) (ray)
 Return \(\min(t_0, t_1) \)
Ray-Sphere Intersection III

- For lighting, calculate unit normal
 \[n = \frac{1}{r} [(x_i - x_c) \ \ (y_i - y_c) \ \ (z_i - z_c)]^T \]
- Negate if ray originates inside the sphere!
- Note possible problems with roundoff errors

Simple Optimizations

- Factor common subexpressions
- Compute only what is necessary
 - Calculate \(b^2 - 4c \), abort if negative
 - Compute normal only for closest intersection
 - Other similar optimizations

Ray-Quadric Intersection

- Quadric \(f(p) = f(x, y, z) = 0 \), where \(f \) is polynomial of order 2
- Sphere, ellipsoid, paraboloid, hyperboloid, cone, cylinder
- Closed form solution as for sphere
- Important case for modeling in ray tracing
- Combine with CSG

Ray-Polygon Intersection I

- Assume planar polygon in 3D
 1. Intersect ray with plane containing polygon
 2. Check if intersection point is inside polygon
- Plane
 - Implicit form: \(ax + by + cz + d = 0 \)
 - Unit normal: \(n = [a \ b \ c]^T \) with \(a^2 + b^2 + c^2 = 1 \)
- Substitute:
 \[a(x_0 + x_i t) + b(y_0 + y_i t) + c(z_0 + z_i t) + d = 0 \]
- Solve:
 \[t = \frac{- (ax_0 + by_0 + cz_0 + d)}{ax_i + by_i + cz_i} \]

Test if point inside polygon

- Use even-odd rule or winding rule
- Easier if polygon is in 2D (project from 3D to 2D)
- Easier for triangles (tessellate polygons)
Point-in-triangle testing

• Critical for polygonal models

• Project the triangle, and point of plane intersection, onto one of the planes
 \(x = 0, y = 0, \) or \(z = 0 \)
 (pick a plane not perpendicular to triangle)
 (such a choice always exists)

• Then, do the 2D test in the plane, by computing barycentric coordinates
 (follows next)

Outline

• Ray-Surface Intersections
• Special cases: sphere, polygon
• Barycentric Coordinates

Interpolated Shading for Ray Tracing

• Assume we know normals at vertices
• How do we compute normal of interior point?
• Need linear interpolation between 3 points
• Barycentric coordinates
• Yields same answer as scan conversion

Barycentric Coordinates in 1D

• Linear interpolation
 \(p(t) = (1 - t)p_1 + tp_2, \) \(0 \leq t \leq 1 \)
 \(p(t) = \alpha p_1 + \beta p_2 \) where \(\alpha + \beta = 1 \)
• \(p \) is between \(p_1 \) and \(p_2 \) if \(0 \leq \alpha, \beta \leq 1 \)
• Geometric intuition
 – Weigh each vertex by ratio of distances from ends
 \[p = \alpha p_1 + \beta p_2 \]
 • \(\alpha, \beta \) are called barycentric coordinates

Barycentric Coordinates in 2D

• Now, we have 3 points instead of 2

• Define 3 barycentric coordinates, \(\alpha, \beta, \gamma \)
• \(p = \alpha p_1 + \beta p_2 + \gamma p_3 \)
• \(p \) inside triangle iff \(0 \leq \alpha, \beta, \gamma \leq 1 \)
 \(\alpha + \beta + \gamma = 1 \)
• How do we calculate \(\alpha, \beta, \gamma \) given \(p \)?

Barycentric Coordinates for Triangle

• Coordinates are ratios of triangle areas

• Areas in these formulas should be signed, depending on clockwise (-) or anti-clockwise orientation (+)
 of the triangle! Very important for point-in-triangle test.
Computing Triangle Area in 3D

- Use cross product
- Parallelogram formula
- Area(ABC) = \(\frac{1}{2} \left| (B - A) \times (C - A) \right| \)
- How to get correct sign for barycentric coordinates?
 - tricky, but possible:
 - compare directions of vectors \((B - A) \times (C - A)\), for
 triangles \(CC_1C_2\) vs \(C_1C_2C_3\), etc.
 (either 0 (sign+) or 180 deg (sign-) angle)
 - easier alternative: project to 2D, use 2D formula
 - projection to 2D preserves barycentric coordinates

Computing Triangle Area in 2D

- Suppose we project the triangle to xy plane
- Area(xy-projection(ABC)) =
 \(\frac{1}{2} \left((b_x - a_x)(c_y - a_y) - (c_x - a_x)(b_y - a_y) \right) \)
- This formula gives correct sign
 (important for barycentric coordinates)

Summary

- Ray-Surface Intersections
- Special cases: sphere, polygon
- Barycentric Coordinates

Class video, Programming Assignment 2