CSCI 480 Computer Graphics
Lecture 5

Viewing and Projection

Shear Transformation
Camera Positioning
Simple Parallel Projections
Simple Perspective Projections
[Angel, Ch. 5]

Reminder: Affine Transformations

- Given a point \([x \ y \ z]\), form homogeneous coordinates \([x \ y \ z \ 1]\).

\[
\begin{bmatrix}
 x' \\
 y' \\
 z'
\end{bmatrix} =
\begin{bmatrix}
 m_{11} & m_{12} & m_{13} & m_{14} \\
 m_{21} & m_{22} & m_{23} & m_{24} \\
 m_{31} & m_{32} & m_{33} & m_{34} \\
 m_{41} & m_{42} & m_{43} & m_{44}
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
\]

- The transformed point is \([x' \ y' \ z']\).

Transformation Matrices in OpenGL

- Transformation matrices in OpenGL are vectors of 16 values (column-major matrices).
- In \texttt{glLoadMatrixf(GLfloat *m)},
 \[m = \{m_1, m_2, ..., m_{16}\} \]
 represents
 \[
 \begin{bmatrix}
 m_1 & m_5 & m_9 & m_{13} \\
 m_2 & m_6 & m_{10} & m_{14} \\
 m_3 & m_7 & m_{11} & m_{15} \\
 m_4 & m_8 & m_{12} & m_{16}
\end{bmatrix}
\]

- Some books transpose all matrices!

Shear Transformations

- x-shear scales \(x\) proportional to \(y\)
- Leaves \(y\) and \(z\) values fixed

\[
\begin{align*}
\cot(\theta) &= (x' - x) / y \\
x' &= x + y \cot(\theta) \\
y' &= y \\
z' &= z
\end{align*}
\]

Specification via Shear Angle

- \(\theta = \text{shear angle} \)

Specification via Ratios

- For example, shear in both \(x\) and \(z\) direction
- Leave \(y\) fixed
- Slope \(\alpha\) for \(x\)-shear, \(\gamma\) for \(z\)-shear
- Solve

\[
\begin{bmatrix}
 x \\
 y \\
 z
\end{bmatrix} =
\begin{bmatrix}
 1 & \alpha & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & \gamma
\end{bmatrix}
\begin{bmatrix}
 x + \alpha y \\
 y + \gamma z' \\
 1
\end{bmatrix}
\]

- Yields

\[
H_{x,z}(\alpha, \gamma) =
\begin{bmatrix}
 1 & \alpha & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & \gamma
\end{bmatrix}
\]

\[
H_{x,z}(\alpha) =
\begin{bmatrix}
 1 & \alpha & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 1
\end{bmatrix}
\]
Composing Transformations

- Let \(p = A \ q \), and \(q = B \ s \).
- Then \(p = (A \ B) \ s \).

\[
\begin{array}{c}
s \quad B \quad q \quad A \\
p
\end{array}
\]

AB matrix multiplication

Composing Transformations

- Fact: Every affine transformation is a composition of rotations, scalings, and translations.
- So, how do we compose these to form an x-shear?
- Exercise!

Outline

- Shear Transformation
- Camera Positioning
- Simple Parallel Projections
- Simple Perspective Projections

Transform Camera = Transform Scene

- Camera position is identified with a frame
- Either move and rotate the objects
- Or move and rotate the camera
- Initially, camera at origin, pointing in negative z-direction

The Look-At Function

- Convenient way to position camera
- \(\text{gluLookAt}(ex, ey, ez, fx, fy, fz, ux, uy, uz); \)
- \(e \) = eye point
- \(f \) = focus point
- \(u \) = up vector

OpenGL code

```c
void display()
{
  glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
  glMatrixMode (GL_MODELVIEW);
  glLoadIdentity();
  gluLookAt (ex, ey, ez, fx, fy, fz, ux, uy, uz);
  glTranslatef(x, y, z);
  ...
  renderBunny();
  glutSwapBuffers();
}
```
Implementing the Look-At Function

Plan:

1. Transform world frame to camera frame
 - Compose a rotation R with translation T
 - $W = T R$

2. Invert W to obtain viewing transformation V
 - $V = W^{-1} = (T R)^{-1} = R^{-1} T^{-1}$
 - Derive R, then T, then $R^{-1} T^{-1}$

World Frame to Camera Frame I

- Camera points in negative z direction
- $n = (f - e) / |f - e|$ is unit normal to view plane
- Therefore, R maps $[0 \ 0 \ -1]^T$ to $[n_x \ n_y \ n_z]^T$

World Frame to Camera Frame II

- R maps $[0,1,0]^T$ to projection of u onto view plane
- This projection v equals:
 - $\alpha = (u \cdot n) / |n| = u \cdot n$
 - $v_u = u - \alpha n$
 - $v = v_u / |v_u|$

World Frame to Camera Frame III

- Set w to be orthogonal to n and v
- $w = n \times v$
- $(w, v, -n)$ is right-handed

World Frame to Camera Frame IV

- Translation of origin to $e = [e_x \ e_y \ e_z]^T$
- Rotation must map:
 - $(1,0,0)$ to w
 - $(0,1,0)$ to v
 - $(0,0,1)$ to n

Summary of Rotation

- gluLookAt(e_x, e_y, e_z, f_x, f_y, f_z, u_x, u_y, u_z);
- $n = (f - e) / |f - e|$
- $v = (u - (u \cdot n) n) / |u - (u \cdot n) n|$
- $w = n \times v$
- Rotation must map:
 - $[w_x \ v_x \ -n_x \ 0]$
 - $[w_y \ v_y \ -n_y \ 0]$
 - $[w_z \ v_z \ -n_z \ 0]$
 - $[0 \ 0 \ 0 \ 1]$
Camera Frame to Rendering Frame

- \(V = W^{-1} = (T R)^{-1} = R^{-1} T^{-1} \)
- \(R \) is rotation, so \(R^{-1} = R^T \)
- \(T \) is translation, so \(T^{-1} \) negates displacement

\[
R^{-1} = \begin{bmatrix}
w_x & w_y & w_z & 0 \\
v_x & v_y & v_z & 0 \\
-\eta_x & -\eta_y & -\eta_z & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

Putting it Together

- Calculate \(V = R^{-1} T^{-1} \)
- This is different from book [Angel, Ch. 5.3.2]
- There, \(u, v, n \) are right-handed (here: \(u, v, -n \))

Other Viewing Functions

- Roll (about z), pitch (about x), yaw (about y)

- Assignment 2 poses a related problem

Outline

- Shear Transformation
- Camera Positioning
- Simple Parallel Projections
- Simple Perspective Projections

Projection Matrices

- Recall geometric pipeline
- Projection takes 3D to 2D
- Projections are not invertible
- Projections also described by 4x4 matrix
- Homogenous coordinates crucial
- Parallel and perspective projections

Parallel Projection

- Project 3D object to 2D via parallel lines
- The lines are not necessarily orthogonal to projection plane
Parallel Projection
• Problem: objects far away do not appear smaller
• Can lead to “impossible objects”:

Orthographic Projection
• A special kind of parallel projection: projectors perpendicular to projection plane
• Simple, but not realistic
• Used in blueprints (multiview projections)

Orthographic Projection Matrix
• Project onto \(z = 0 \)
• \(x_p = x, \; y_p = y, \; z_p = 0 \)
• In homogenous coordinates

Perspective
• Perspective characterized by foreshortening
• More distant objects appear smaller
• Parallel lines appear to converge
• Rudimentary perspective in cave drawings:

Discovery of Perspective
• Foundation in geometry (Euclid)

Middle Ages
• Art in the service of religion
• Perspective abandoned or forgotten
Renaissance
• Rediscovery, systematic study of perspective

Projection (Viewing) in OpenGL
• Remember: camera is pointing in the negative z direction

Orthographic Viewing in OpenGL
• glOrtho(xmin, xmax, ymin, ymax, near, far)

Perspective Viewing in OpenGL
• Two interfaces: glFrustum and gluPerspective
• glFrustum(xmin, xmax, ymin, ymax, near, far);

Field of View Interface
• gluPerspective(fovy, aspectRatio, near, far);
• near and far as before
• aspectRatio = w / h
• Fovy specifies field of view as height (y) angle

OpenGL code
```c
void reshape(int x, int y)
{
    glViewport(0, 0, x, y);
    glMatrixMode(GL_PROJECTION);
    glLoadIdentity();
    gluPerspective(60.0, 1.0 * x / y, 0.01, 10.0);
}
```
Perspective Viewing Mathematically

- $d =$ focal length
- $y/z = y_p/d$ so $y_p = y/(z/d) = y \cdot d/z$
- Note that y_p is non-linear in the depth z!

Exploiting the 4th Dimension

- Perspective projection is not affine:
 $$M \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{x}{z/d} \\ \frac{y}{z/d} \\ \frac{z}{d} \\ 1 \end{bmatrix}$$ has no solution for M

- Idea: exploit homogeneous coordinates
 $$p = w \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$ for arbitrary $w \neq 0$

Perspective Projection Matrix

- Use multiple of point
 $$\begin{bmatrix} \frac{x}{z/d} \\ \frac{y}{z/d} \\ \frac{z}{d} \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \\ \frac{d}{z} \end{bmatrix}$$

- Solve
 $$M \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \\ \frac{d}{z} \end{bmatrix}$$ with $M = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

Projection Algorithm

Input: 3D point (x,y,z) to project

1. Form $[x \ y \ z \ 1]^T$
2. Multiply M with $[x \ y \ z \ 1]^T$; obtaining $[X \ Y \ Z \ W]^T$
3. Perform perspective division:
 $$X / W, \ Y / W, \ Z / W$$

Output: $(X / W, \ Y / W, \ Z / W)$
(last coordinate will be d)

Perspective Division

- Normalize $[x \ y \ z \ w]^T$ to $[(x/w) \ (y/w) \ (z/w) \ 1]^T$

- Perform perspective division after projection

- Projection in OpenGL is more complex
 (includes clipping)