Transformations

OpenGL Transformation Matrices
- Model-view matrix (4x4 matrix)
- Projection matrix (4x4 matrix)

4x4 Model-view Matrix (this lecture)
- Translate, rotate, scale objects
- Position the camera

4x4 Projection Matrix (next lecture)
- Project from 3D to 2D

OpenGL Transformation Matrices
- Manipulated separately in OpenGL (must set matrix mode):
 - glMatrixMode(GL_MODELVIEW);
 - glMatrixMode(GL_PROJECTION);
Setting the Current Model-view Matrix

- Load or post-multiply
 - `glMatrixMode(GL_MODELVIEW);`
 - `glLoadIdentity();` // very common usage
 - `glLoadMatrixf(m);` // rare, advanced
 - `glMultMatrixf(m);` // rare, advanced

- Use library functions
 - `glTranslatef(dx, dy, dz);`
 - `glRotatef(angle, vx, vy, vz);`
 - `glScalef(sx, sy, sz);`

The rendering coordinate system

Initially (after `glLoadIdentity()`) :
- rendering coordinate system = world coordinate system

The rendered coordinate system

- `glTranslatef(x, y, z);`
- `glRotatef(angle, ax, ay, az);`
- `glScalef(sx, sy, sz);`
OpenGL code

```c
glMatrixMode (GL_MODELVIEW);
glLoadIdentity();
glTranslatef(x, y, z);
glRotatef(angle, ax, ay, az);
glScalef(sx, sy, sz);
renderBunny();
```

Rendering more objects

```
Solution 1:
Find glTranslate(...), glRotatef(...),
glScalef(...) 
```

```
Solution 2: gl(Push,Pop)Matrix

```c
glMatrixMode (GL_MODELVIEW);
glLoadIdentity();
// render first bunny
glPushMatrix(); // store current matrix
glTranslatef(...);
glRotatef(...);
renderBunny();
glPopMatrix(); // pop matrix
// render second bunny
glPushMatrix(); // store current matrix
glTranslatef(...);
glRotatef(...);
renderBunny();
glPopMatrix(); // pop matrix
```

3D Math Review

Scalars
- Scalars $\alpha, \beta, \gamma$ from a scalar field
- Operations $\alpha + \beta, \alpha \cdot \beta, 0, 1, -\alpha, ( )^{-1}$
- “Expected” laws apply
- Examples: rationals or reals with addition and multiplication
Vectors
- Vectors $u, v, w$ from a vector space
- Vector addition $u + v$, subtraction $u - v$
- Zero vector $\mathbf{0}$
- Scalar multiplication $\alpha v$

Euclidean Space
- Vector space over real numbers
- Three-dimensional in computer graphics
- Dot product: $\alpha = u \cdot v = u_1 v_1 + u_2 v_2 + u_3 v_3$
  - $\mathbf{0} \cdot \mathbf{0} = 0$
  - $u, v$ are orthogonal if $u \cdot v = 0$
  - $|v|^2 = v \cdot v$ defines $|v|$, the length of $v$

Lines and Line Segments
- Parametric form of line: $P(\alpha) = P_0 + \alpha \mathbf{d}$
- Line segment between $Q$ and $R$:
  $P(\alpha) = (1-\alpha) Q + \alpha R$ for $0 \leq \alpha \leq 1$

Convex Hull
- Convex hull defined by
  $P = \alpha_1 P_1 + \ldots + \alpha_n P_n$
  for $\alpha_1 + \ldots + \alpha_n = 1$ and $0 \leq \alpha_i \leq 1, i = 1, \ldots, n$

Projection
- Dot product projects one vector onto another vector
  $u \cdot v = u_1 v_1 + u_2 v_2 + u_3 v_3 = |u| |v| \cos(\theta)$
  $\mathbf{pr}_v u = (u \cdot v) v / |v|^2$

Cross Product
- $|a \times b| = |a| |b| \sin(\theta)$
- Cross product is perpendicular to both $a$ and $b$
- Right-hand rule
Plane
- Plane defined by point $P_0$ and vectors $u$ and $v$
- $u$ and $v$ should not be parallel
- Parametric form: $T(\alpha, \beta) = P_0 + \alpha u + \beta v$ ($\alpha$ and $\beta$ are scalars)
- $n = u \times v / \|u \times v\|$ is the normal
- $n \cdot (P - P_0) = 0$ if and only if $P$ lies in plane

Coordinate Systems
- Let $v_1, v_2, v_3$ be three linearly independent vectors in a 3-dimensional vector space
- Can write any vector $w$ as $w = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3$ for some scalars $\alpha_1, \alpha_2, \alpha_3$

Frames
- Frame = origin $P_0$ + coordinate system
- Any point $P = P_0 + \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3$

In Practice, Frames are Often Orthogonal

Change of Coordinate System
- Bases $(u_1, u_2, u_3)$ and $(v_1, v_2, v_3)$
- Express basis vectors $u_i$ in terms of $v_j$
  - $u_1 = \gamma_{11} v_1 + \gamma_{12} v_2 + \gamma_{13} v_3$
  - $u_2 = \gamma_{21} v_1 + \gamma_{22} v_2 + \gamma_{23} v_3$
  - $u_3 = \gamma_{31} v_1 + \gamma_{32} v_2 + \gamma_{33} v_3$
- Represent in matrix form:
  $$
  \begin{bmatrix}
  u_1 \\
  u_2 \\
  u_3
  \end{bmatrix} = M
  \begin{bmatrix}
  v_1 \\
  v_2 \\
  v_3
  \end{bmatrix}
  \quad M =
  \begin{bmatrix}
  \gamma_{11} & \gamma_{12} & \gamma_{13} \\
  \gamma_{21} & \gamma_{22} & \gamma_{23} \\
  \gamma_{31} & \gamma_{32} & \gamma_{33}
  \end{bmatrix}
  $$

Representing 3D transformations (and model-view matrices)
Linear Transformations

- 3 x 3 matrices represent linear transformations
- Can represent rotation, scaling, and reflection
- Cannot represent translation

\[ M = \begin{bmatrix}
  γ_1 & γ_2 & γ_3 \\
  γ_1 & γ_2 & γ_3 \\
  γ_1 & γ_2 & γ_3 \\
\end{bmatrix} \]

In order to represent rotations, scales AND translations:

Homogeneous Coordinates

- Augment \([α_1, α_2, α_3]^T \) by adding a fourth component (1):
  \[ p = [α_1, α_2, α_3, 1]^T \]

- Homogeneous property:
  \[ p = [α_1, α_2, α_3, 1]^T = [βα_1, βα_2, βα_3, β]^T, \]
  for any scalar \( β \neq 0 \)

Homogeneous coordinates are transformed by 4x4 matrices

Affine Transformations (4x4 matrices)

- Translation
- Rotation
- Scaling
- Any composition of the above
- Later: projective (perspective) transformations
  - Also expressible as 4 x 4 matrices!

Translation

- \( q = p + d \) where \( d = [α_x, α_y, α_z, 0]^T \)
- \( p = [x, y, z, 1]^T \)
- \( q = [x', y', z', 1]^T \)

- Express in matrix form \( q = T \ p \) and solve for \( T \)
  \[ T = \begin{bmatrix}
    1 & 0 & 0 & α_x \\
    0 & 1 & 0 & α_y \\
    0 & 0 & 1 & α_z \\
    0 & 0 & 0 & 1 \\
  \end{bmatrix} \]

Scaling

- \( x' = β_x x \)
- \( y' = β_y y \)
- \( z' = β_z z \)
- Express as \( q = S \ p \) and solve for \( S \)
  \[ S = \begin{bmatrix}
    β_x & 0 & 0 & 0 \\
    0 & β_y & 0 & 0 \\
    0 & 0 & β_z & 0 \\
    0 & 0 & 0 & 1 \\
  \end{bmatrix} \]
Rotation in 2 Dimensions

- Rotation by \( \theta \) about the origin
- \( x' = x \cos \theta - y \sin \theta \)
- \( y' = x \sin \theta + y \cos \theta \)

- Express in matrix form:

\[
\begin{bmatrix}
  x' \\
  y'
\end{bmatrix} =
\begin{bmatrix}
  \cos(\theta) & -\sin(\theta) \\
  \sin(\theta) & \cos(\theta)
\end{bmatrix}
\begin{bmatrix}
  x \\
  y
\end{bmatrix}
\]

- Note that the determinant is 1

Rotation in 3 Dimensions

- Orthogonal matrices:

\[
RR^T = R^TR = I
\]
\[
\text{det}(R) = 1
\]

- Affine transformation:

\[
A =
\begin{bmatrix}
  R_{11} & R_{12} & R_{13} & 0 \\
  R_{21} & R_{22} & R_{23} & 0 \\
  R_{31} & R_{32} & R_{33} & 0 \\
  0 & 0 & 0 & 1
\end{bmatrix}
\]

Affine Matrices are Composed by Matrix Multiplication

- \( A = A_1 A_2 A_3 \)
- Applied from right to left
- \( A \cdot p = (A_1 A_2 A_3) \cdot p = A_1 (A_2 (A_3 p)) \)
- When calling `glTranslatef`, `glRotatef`, or `glScalef`, OpenGL forms the corresponding 4x4 matrix, and multiplies the current model/view matrix with it.

Summary

- OpenGL Transformation Matrices
- Vector Spaces
- Frames
- Homogeneous Coordinates
- Transformation Matrices