CSCI 480 Computer Graphics
Lecture 1

Course Overview

Administrative Issues
Modeling
Animation
Rendering
OpenGL Programming
[Angel Ch. 1]

January 14, 2013
Jernej Barbic
University of Southern California
http://www-bcf.usc.edu/~jbarbic/cs480-s13/

Course Information On-Line

http://www-bcf.usc.edu/~jbarbic/cs480-s13/
- Schedule (slides, readings)
- Assignments (details, due dates)
- Software (libraries, hints)
- Resources (books, tutorials, links)

Blackboard:
- Forum
- Submit assignments

Course slides

http://www-bcf.usc.edu/~jbarbic/cs480-s13/
- Full-color version
- 6-slides-per-page B&W version – good for printing
- Posted in advance of lectures – bring to class & annotate
- Color viewing in Acrobat Reader: Disable “Replace Document Colors” in Preferences, Accessibility (if enabled)

About me

Assistant professor in CS
Post-doc at MIT
PhD, Carnegie Mellon University
jnb@usc.edu
Mon 3:35-5:00, SAL 230

About the teacher

Background:
BSc Mathematics
PhD Computer Science

Research interests:
graphics, animation, real-time physics, control, sound, haptics

Prerequisites

- CSCI 102 Data Structures
- Familiarity with calculus and linear algebra
- C/C++ programming skills
- See me if you are missing any and we haven’t discussed it
Textbooks

- Interactive Computer Graphics
 A top-down approach with OpenGL, Fifth Edition
 Edward Angel, Addison-Wesley

- OpenGL Programming Guide ("Red Book")
 Basic version also available on-line (see Resources)

Grading

- 51% Programming Assignments (3x 17%)
- 19% Midterm (one sheet of notes only, in class)
- 30% Final (open book)

Academic integrity

- No collaboration!
- Do not copy any parts of any of the assignments from anyone
- Do not look at other students' code, papers, assignments or exams
- USC Office of Student Judicial Affairs and Community Standards will be notified

Assignment Policies

- Programming assignments
 - Hand in via Blackboard by end of due date
 - Functionality and features
 - Style and documentation
 - Artistic impression
- 3 late days, usable any time during semester
- Academic integrity policy applied rigorously

Computer Graphics

One of the "core" computer science disciplines:

- Algorithms and Theory
- Artificial Intelligence
- Computer Architecture
- Computer Graphics and Visualization
- Computer Security
- Computer Systems
- Databases
- Networks
- Programming Languages
- Software Engineering

Course Overview

Theory: Computer graphics disciplines:
- Modeling: how to represent objects
- Animation: how to control and represent motion
- Rendering: how to create images of objects
- Image Processing: how to edit images

Practice: OpenGL graphics library

Not in this course:
- Human-computer interaction
- Graphic design
- DirectX API
Computer Graphics Disciplines

- Rendering
- Geometry (Modeling)
- Image Processing
- Animation

Source: Botsch et al.

Source: Baraff and Witkin

Source: Durand

Source: Jensen

Computer Graphics Goals I

- Synthetic images indistinguishable from reality
- Practical, scientifically sound, in real time

Example: Ray Tracing

Barbic, James, SIGGRAPH 2010

Thurey, Wojtan, Gross, Turk, SIGGRAPH 2010

Example: Physics + Computational Geometry + Animation + Ray Tracing

Barbic, James, SIGGRAPH 2010

Computer Graphics Goals II

- Creating a new reality (not necessarily scientific)
- Practical, aesthetically pleasing, in real time

Example: Radiosity

Example: Illustrating Smooth Surfaces
A. Hertzmann, D. Zorin, SIGGRAPH 2000
Non-photorealistic rendering (NPR)

Example: Scene Completion
J. Hays, A. Efros, SIGGRAPH 2007

SIGGRAPH
• Main computer graphics event in the world
• Once per year
• 30,000 attendees
• Academia, industry

1. Course Overview
• Administrative Issues
• Topics Outline (next)

2. OpenGL Basics
• Primitives and attributes
• Color
• Viewing
• Control functions
• [Angel, Ch. 2]

3. Input and Interaction
• Clients and servers
• Event driven programming
• Text and fonts
• [Angel, Ch. 3]
4. Objects & Transformations
- Linear algebra review
- Coordinate systems and frames
- Rotation, translation, scaling
- Homogeneous coordinates
- OpenGL transformation matrices
 - [Angel, Ch. 4]

5. Viewing and Projection
- Orthographic projection
- Perspective projection
- Camera positioning
- Projections in OpenGL
- Hidden surface removal
 - [Angel, Ch. 5]

6. Hierarchical Models
- Re-using objects
- Animations
- OpenGL routines
- Parameters and transformations
 - [Angel, Ch. 10]

7. Light and Shading
- Light sources
- Ambient, diffuse, and specular reflection
- Normal vectors
- Material properties in OpenGL
- Radiosity
 - [Angel, Ch. 6]

8. Curves and Surfaces
- Review of 3D-calculus
- Explicit representations
- Implicit representations
- Parametric curves and surfaces
- Hermite curves and surfaces
- Bezier curves and surfaces
- Splines
- Curves and surfaces in OpenGL
 - [Angel, Ch. 12]

9. Rendering
- Clipping
- Bounding boxes
- Hidden-surface removal
- Line drawing
- Scan conversion
- Antialiasing
 - [Angel, Ch. 7,8]
10. Textures and Pixels
- Texture mapping
- OpenGL texture primitives
- Bump maps
- Environment maps

11. Ray Tracing
- Opacity and blending
- Image filtering
- [Angel, Ch. 8]

12. Radiosity
- [Angel Ch. 13.4-5]

13. Physically Based Models
- Particle systems
- Spring forces
- Cloth
- Collisions
- Constraints
- Fractals
- [Angel, Ch. 11]

14. Scientific Visualization
- Height fields and contours
- Isosurfaces
- Volume rendering
- Texture mapping of volumes

Guest Lecture: TBA

“Wildcard” Lectures:
- Graphics hardware
- More on animation
- Motion capture
- Virtual reality and interaction
- Special effects in movies
- Video game programming
- Non-photo-realistic rendering
Hot Application Areas

- Special effects
- Feature animation
- PC graphics boards
- Video games
- Visualization (science, architecture, space)

Hot Research Topics

- **Modeling**
 - getting models from the real world
 - multi-resolution
- **Animation**
 - physically based simulation
 - motion capture
- **Rendering:**
 - more realistic: image-based modeling
 - less realistic: impressionist, pen & ink

Acknowledgments

- Jessica Hodgins (CMU)
- Frank Pfenning (CMU)
- Paul Heckbert (Nvidia)