Scientific Visualization

- Generally do not start with a 3D triangle model
- Must deal with very large data sets
 - MRI, e.g. 512 x 512 x 200 = 50MB points
 - Visible Human 512 x 512 x 1734 = 433 MB points
- Visualize both real-world and simulation data
- User interaction
- Automatic search for relevant data

Types of Data

- Scalar fields (3D volume of scalars)
 - E.g., x-ray densities (MRI, CT scan)
- Vector fields (3D volume of vectors)
 - E.g., velocities in a wind tunnel
- Tensor fields (3D volume of tensors [matrices])
 - E.g., stresses in a mechanical part
- Static or dynamic through time

Visualization

Height Fields and Contours
Scalar Fields
Volume Rendering
Vector Fields

April 25, 2012
Jernej Barbic
University of Southern California
http://www-bcf.usc.edu/~jbarbic/cs480-s12/

Height Field

- Visualizing an explicit function
 \[z = f(x,y) \]
- Adding contour curves
 \[g(x,y) = c \]

Meshes

- Function is sampled (given) at \(x_i, y_j, 0 \leq i, j \leq n \)
- Assume equally spaced
 \[x_i = x_0 + i\Delta x \]
 \[y_j = y_0 + j\Delta y \]
- Generate quadrilateral or triangular mesh
- [Assignment 1]

Contour Curves

- Recall: implicit curve \(f(x,y) = 0 \)
 \[f(x,y) < 0 \text{ inside, } f(x,y) > 0 \text{ outside} \]
- Here: contour curve at \(f(x,y) = c \)
- Implicit function \(f \) sampled at regular intervals for \(x,y \)
 \[x_i = x_0 + i\Delta x \]
 \[y_j = y_0 + j\Delta y \]
- How can we draw the curve?
Marching Squares

- Sample function f at every grid point x_i, y_j
- For every point $f_{ij} = f(x_i, y_j)$ either $f_{ij} \leq c$ or $f_{ij} > c$
- Distinguish those cases for each corner x
 - White: $f_{ij} \leq c$
 - Black: $f_{ij} > c$
- Now consider cases for curve
- Assume “smooth”

Interpolating Intersections

- Approximate intersection
 - Midpoint between x_i, x_{i+1} and y_j, y_{j+1}
 - Better: interpolate
- If $f_{ij} = a$ is closer to c than $b = f_{i+1j}$ then intersection is closer to (x_i, y_j):
 \[
 \frac{x - x_i}{x_{i+1} - x} = \frac{c - a}{b - c}
 \]
- Analogous calculation for y direction

Cases for Vertex Labels

- 16 cases for vertex labels
- 4 unique cases modulo symmetries

Ambiguities of Labelings

- Different resulting contours
- Resolution by subdivision (if such higher resolution available / possible)

Marching Squares Examples

- Ovals of Cassini, 50 x 50 grid
 \[
 f(x, y) = (x^2 + y^2 + a^2)^2 - 4a^2x^2 - b^4
 \]
 $a = 0.49, b = 0.5$
- Contour plot of Honolulu data

Outline

- Height Fields and Contours
- Scalar Fields
- Volume Rendering
- Vector Fields
Scalar Fields

- Volumetric data sets
- Example: tissue density
- Assume again regularly sampled
 \[x_i = x_0 + i \Delta x \]
 \[y_j = y_0 + j \Delta y \]
 \[z_k = z_0 + k \Delta z \]
- Represent as voxels

Isosurfaces

- \(f(x,y,z) \) represents volumetric data set
- Two rendering methods
 - Isosurface rendering
 - Direct volume rendering (use all values [next])
- Isosurface given by \(f(x,y,z) = c \)
- Recall implicit surface \(g(x, y, z) \):
 - \(g(x, y, z) < 0 \) inside
 - \(g(x, y, z) = 0 \) surface
 - \(g(x, y, z) > 0 \) outside
- Generalize right-hand side from 0 to c

Marching Cubes

- Display technique for isosurfaces
- 3D version of marching squares
- 14 cube labelings (after elimination of symmetries)

Marching Cube Tessellations

- Generalize marching squares, just more cases
- Interpolate as in 2D
- Ambiguities similar to 2D

Volume Rendering

- Sometimes isosurfaces are unnatural or do not give sufficient information
- Use all voxels and transparency (\(\alpha \)-values)

Surface vs. Volume Rendering

- 3D model of surfaces
- Convert to triangles
- Draw primitives
- Lose or disguise data
- Good for opaque objects
- Scalar field in 3D
- Convert it to RGBA values
- Render volume “directly”
- See data as given
- Good for complex objects
Sample Applications

- Medical
 - Computed Tomography (CT)
 - Magnetic Resonance Imaging (MRI)
 - Ultrasound
- Engineering and Science
 - Computational Fluid Dynamic (CFD)
 - Aerodynamic simulations
 - Meteorology
 - Astrophysics

Volume Rendering Pipeline

- Transfer function: converts input data set to colors and opacities
 - Example input: 256 x 256 x 256 x 8 bytes = 128 MB
 - Convert to 24 bit color, 8 bit opacity

Transfer Functions

- Transform scalar data values to RGBA values
- Apply to every voxel in volume
- Highly application dependent
- Start from data histogram
- Opacity for emphasis

Transfer Function Example

- Mantle Heat Convection

Volume Ray Casting

- Three volume rendering techniques
 - Volume ray casting
 - Splatting
 - 3D texture mapping
- Ray Casting
 - Integrate color through volume
 - Consider lighting (surfaces?)
 - Use regular x,y,z data grid when possible
 - Finite elements when necessary (e.g., ultrasound)
 - 3D-rasterize geometrical primitives

Accumulating Opacity

- $\alpha = 1.0$ is opaque
- Composite multiple layers according to opacity
- Use local gradient of opacity for enhanced display of boundaries

\[C_{out} = C_{in} \times \alpha \]
Trilinear Interpolation
- Interpolate to compute RGBA away from grid
- Nearest neighbor yields blocky images
- Use trilinear interpolation
- 3D generalization of bilinear interpolation

Splatting
- Alternative to ray tracing
- Assign shape to each voxel (e.g., Gaussian)
- Project onto image plane (splat)
- Draw voxels back-to-front
- Composite (α-blend)

3D Textures
- Alternative to ray tracing, splatting
- Build a 3D texture (including opacity)
- Draw a stack of polygons, back-to-front
- Efficient if supported in graphics hardware
- Few polygons, much texture memory

Example: 3D Textures

Other Techniques
- Use CSG for cut-aways
Acceleration of Volume Rendering

- Basic problem: Huge data sets
- Must program for locality (cache)
- Divide into multiple blocks if necessary
 - Example: marching cubes
- Use error measures to stop iteration
- Exploit parallelism

Outline

- Height Fields and Contours
- Scalar Fields
- Volume Rendering
- Vector Fields

Vector Fields

- Visualize vector at each (x,y,z) point
 - Example: velocity field
 - Example: hair
- Hedgehogs
 - Use 3D directed line segments (sample field)
 - Orientation and magnitude determined by vector
- Animation
 - Use for still image
 - Particle systems

Using Glyphs and Streaklines

Glyphs for air flow
University of Utah

Glyph = marker (for example, an arrow) used for data visualization

More Flow Examples

Blood flow in human carotid artery

Example: Jet Shockwave

P. Sutton
University of Utah

http://www.sci.utah.edu/
Summary

- Height Fields and Contours
- Scalar Fields
 - Isosurfaces
 - Marching cubes
- Volume Rendering
 - Volume ray tracing
 - Splatting
 - 3D Textures
- Vector Fields
 - Hedgehogs
 - Animated and interactive visualization