Blending

- Blend transparent objects during rendering
- Achieve other effects (e.g., shadows)

<table>
<thead>
<tr>
<th>Opaque A and B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partially-transparent A and B</td>
</tr>
</tbody>
</table>

Image Compositing

- Compositing operation
 - Source: \(s = [s_r, s_g, s_b, s_a] \)
 - Destination: \(d = [d_r, d_g, d_b, d_a] \)
 - \(b = [b_r, b_g, b_b] \) source blending factors
 - \(c = [c_r, c_g, c_b] \) destination blending factors
 - \(d' = [b_r s_r + c_r d_r, b_g s_g + c_g d_g, b_b s_b + c_b d_b, b_a s_a + c_a d_a] \)
- Example: overlay n images with equal weight
 - Set \(\alpha \)-value for each pixel in each image to \(1/n \)
 - Source blending factor is \(\alpha \)
 - Destination blending factor is \(1 \)

Blending in OpenGL

- Enable blending
 - `glEnable(GL_BLEND);`
- Set up source and destination factors
 - `glBlendFunc(source_factor, dest_factor);`
- Source and destination choices
 - GL_ONE, GL_ZERO
 - GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA
 - GL_DST_ALPHA, GL_ONE_MINUS_DST_ALPHA
- Set alpha values: 4th parameter to
 - `glColor4f(r, g, b, alpha)`
 - `glLightfv`, `glMaterialfv`

Blending Errors

- Operations are not commutative
 - rendering order changes result
- Operations are not idempotent
 - render same object twice gives different result to rendering once
- Interaction with hidden-surface removal is tricky
 - Polygon behind opaque polygon(s) should be culled
 - Transparent in front of others should be composited
 - Solution: make z-buffer read-only for transparent polygons with `glDepthMask(GL_FALSE);`

Alpha Channel

- Frame buffer
 - Simple color model: R, G, B; 8 bits each
 - \(\alpha \)-channel A, another 8 bits
- Alpha determines opacity, pixel-by-pixel
 - \(\alpha = 1 \): opaque
 - \(\alpha = 0 \): transparent

Image Processing

April 11, 2012
Jernej Barbic
University of Southern California
http://www-bcf.usc.edu/~jbarbic/cs480-s12/

Blending

- Display Color Models
- Filters
- Dithering

[Ch 7.13, 8.11-8.12]
Outline

- Blending
- Display Color Models
- Filters
- Dithering

Displays and Framebuffers

- Image stored in memory as 2D pixel array, called framebuffer
- Value of each pixel controls color
- Video hardware scans the framebuffer at 60Hz
- Depth of framebuffer is information per pixel
 - 1 bit: black and white display
 - 8 bit: 256 colors at any given time via colormap
 - 16 bit: 5, 6, 5 bits (R,G,B), $2^{16} = 65,536$ colors
 - 24 bit: 8, 8, 8 bits (R,G,B), $2^{24} = 16,777,216$ colors

Fewer Bits: Colormaps

- Colormap is array of RGB values, k bits each (e.g., k=8)
- Each pixel stored not the color, but an index into colormap
- All 2^{24} colors can be represented, but only 2^k colors at a time
- Poor approximation of full color
- Colormap hacks: affect image without changing framebuffer (only colormap)

More Bits: Graphics Hardware

- 24 bits: RGB
- + 8 bits: A (α-channel for opacity)
- + 16 bits: Z (for hidden-surface removal)
- * 2: double buffering for smooth animation
 - = 96 bits
 - For 1024 * 768 screen: 9 MB
 - Easily possible on modern hardware

Image Processing

- 2D generalization of signal processing
- Image as a two-dimensional signal
- Point processing: modify pixels independently
- Filtering: modify based on neighborhood
- Compositing: combine several images
- Image compression: space-efficient formats
- Other topics
 - Image enhancement and restoration
 - Computer vision

Outline

- Blending
- Display Color Models
- Filters
- Dithering
Point Processing

- Process each pixel independently from others
- Input: \(a(x,y) \); Output: \(b(x,y) = f(a(x,y)) \)
- Useful for contrast adjustment, false colors
- Examples for grayscale, \(0 \leq v \leq 1 \)
 - \(f(v) = v \) (identity)
 - \(f(v) = 1-v \) (negate image)
 - \(f(v) = v^p, \ p < 1 \) (brighten)
 - \(f(v) = v^p, \ p > 1 \) (darken)

Gamma Correction

- Example of point processing
- Compensates monitor brightness non-linearities (older monitors)

\[
\begin{align*}
\Gamma & = 1.0; \quad f(v) = v \\
\Gamma & = 0.5; \quad f(v) = v^{1/0.5} = v^2 \\
\Gamma & = 2.5; \quad f(v) = v^{1/2.5} = v^{0.4}
\end{align*}
\]

Signals and Filtering

- Audio recording is 1D signal: amplitude(t)
- Image is a 2D signal: color(x,y)
- Signals can be continuous or discrete
- Raster images are discrete
 - In space: sampled in x, y
 - In color: quantized in value
- Filtering: a mapping from signal to signal

Linear and Shift-Invariant Filters

- Linear with respect to input signal
- Shift-invariant with respect to parameter
- Convolution in 1D
 - \(a(t) \) is input signal
 - \(b(s) \) is output signal
 - \(h(u) \) is filter
- Convolution in 2D
 \[
 b(x,y) = \sum_{u=-\infty}^{\infty} \sum_{v=-\infty}^{\infty} a(u,v) h(x-u,y-v)
 \]

Filters with Finite Support

- Filter \(h(u,v) \) is 0 except in given region
- Example: 3 \times 3 blurring filter
 \[
 h(x,y) = \frac{1}{9} \left(a(x-1,y-1) + a(x-1,y) + a(x+1,y-1) + a(x-1,y+1) + a(x,y) + a(x+1,y+1) + a(x-1,y+1) + a(x+1,y+1) + a(x+1,y-1) \right)
 \]
- As function
 \[
 h(u,v) = \begin{cases}
 \frac{1}{9}; & \text{if } -1 \leq u, v \leq 1 \\
 0; & \text{otherwise}
 \end{cases}
 \]
- In matrix form
 \[
 \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\
 1 & 1 & 1 \end{bmatrix}
 \]

Blurring Filters

- Average values of surrounding pixels
- Can be used for anti-aliasing
- Size of blurring filter should be odd
- What do we do at the edges and corners?
- For noise reduction, use median, not average
 - Eliminates intensity spikes
 - Non-linear filter
Examples of Blurring Filter

Original Image Blur 3x3 mask Blur 7x7 mask

Example Noise Reduction

Original image Image with noise Median filter (5x5)

Edge Filters

- Task: Discover edges in image
- Characterized by large gradient
 \[\nabla a = \left[\frac{\partial a}{\partial x}, \frac{\partial a}{\partial y} \right] \]
 \[|\nabla a| = \sqrt{\left(\frac{\partial a}{\partial x}\right)^2 + \left(\frac{\partial a}{\partial y}\right)^2} \]
- Approximate square root
 \[|\nabla a| \approx \frac{\partial a}{\partial x} + \frac{\partial a}{\partial y} \]
- Approximate partial derivatives, e.g.
 \[\frac{\partial a}{\partial x} \approx a(x+1) - a(x-1) \]

Sobel Filter

- Very popular edge detection filter
- Approximate:
 \[\frac{\partial}{\partial x} \approx \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}, \quad \frac{\partial}{\partial y} \approx \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix} \]
- Output is |\nabla a|, computed as follows:
 \[|\nabla a| = \sqrt{\left(\frac{\partial a}{\partial x}\right)^2 + \left(\frac{\partial a}{\partial y}\right)^2} \]
- Sobel filter is non-linear
 - Square and square root (more exact computation)
 - Can also use absolute value (faster computation)

Sample Filter Computation

- One part (of the two) of the Sobel filter
- Detects vertical edges

Example of Edge Filter

Original image Edge filter, then brightened
Outline

• Blending
• Display Color Models
• Filters
• Dithering

Dithering

• Compensates for lack of color resolution
• Give up spatial resolution for color resolution
• Eye does spatial averaging

Black/White Dithering

• For gray scale images
• Each pixel is black or white
• From far away, eye perceives color by fraction of white
• For 3x3 block, 10 levels of gray scale

Color Dithering

• Dither RGB separately
• Assemble results into k-bit index into colormap (often k=8)

Halftoning

• Regular patterns create artifacts
 – Avoid stripes
 – Avoid isolated pixels
 (e.g. on laser printer)
 – Monotonicity: keep pixels on at higher intensities
 – Floyd-Steinberg dithering
• Example of good 3x3 dithering matrix
 – For intensity n, turn on pixels 0..n–1

Summary

• Display Color Models
 – 8 bit (colormap), 24 bit, 96 bit
• Filters
 – Blur, edge detect, sharpen, despeckle (noise removal)
• Dithering