CSCI 480 Computer Graphics
Lecture 16

Geometric Queries for Ray Tracing

Ray-Surface Intersection
Barycentric Coordinates
[Ch. 13.2 - 13.3]

March 21, 2012
Jernej Barbic
University of Southern California

http://www-bcf.usc.edu/~jbarbic/cs480-s12/
Ray-Surface Intersections

- Necessary in ray tracing
- General implicit surfaces
- General parametric surfaces
- Specialized analysis for special surfaces
 - Spheres
 - Planes
 - Polygons
 - Quadrics
Intersection of Rays and Parametric Surfaces

• Ray in parametric form
 – Origin $\mathbf{p}_0 = [x_0 \ y_0 \ z_0]^T$
 – Direction $\mathbf{d} = [x_d \ y_d \ z_d]^T$
 – Assume \mathbf{d} is normalized ($x_d^2 + y_d^2 + z_d^2 = 1$)
 – Ray $\mathbf{p}(t) = \mathbf{p}_0 + \mathbf{d} \ t$ for $t > 0$

• Surface in parametric form
 – Point $\mathbf{q} = g(u, v)$, possible bounds on u, v
 – Solve $\mathbf{p} + \mathbf{d} \ t = g(u, v)$
 – Three equations in three unknowns (t, u, v)
Intersection of Rays and Implicit Surfaces

• Ray in parametric form
 – Origin $p_0 = [x_0 \ y_0 \ z_0]^T$
 – Direction $d = [x_d \ y_d \ z_d]^T$
 – Assume d normalized ($x_d^2 + y_d^2 + z_d^2 = 1$)
 – Ray $p(t) = p_0 + d \ t$ for $t > 0$

• Implicit surface
 – Given by $f(q) = 0$
 – Consists of all points q such that $f(q) = 0$
 – Substitute ray equation for q: $f(p_0 + d \ t) = 0$
 – Solve for t (univariate root finding)
 – Closed form (if possible), otherwise numerical approximation
Ray-Sphere Intersection I

• Common and easy case
• Define sphere by
 – Center \(\mathbf{c} = [x_c, y_c, z_c]^T \)
 – Radius \(r \)
 – Surface \(f(q) = (x - x_c)^2 + (y - y_c)^2 + (z - z_c)^2 - r^2 = 0 \)
• Plug in ray equations for \(x, y, z \):

\[
\begin{align*}
 x &= x_0 + x_d t, \\
 y &= y_0 + y_d t, \\
 z &= z_0 + z_d t
\end{align*}
\]

• And we obtain a scalar equation for \(t \):

\[
(x_0 + x_d t - x_c)^2 + (y_0 + y_d t - y_c)^2 + (z_0 + z_d t - z_c)^2 = r^2
\]
Ray-Sphere Intersection II

• Simplify to

\[at^2 + bt + c = 0 \]

where

\[a = x_d^2 + y_d^2 + z_d^2 = 1 \quad \text{since } |d| = 1 \]
\[b = 2(x_d(x_0 - x_c) + y_d(y_0 - y_c) + z_d(z_0 - z_c)) \]
\[c = (x_0 - x_c)^2 + (y_0 - y_c)^2 + (z_0 - z_c)^2 - r^2 \]

• Solve to obtain \(t_0 \) and \(t_1 \)

\[t_{0,1} = \frac{-b \pm \sqrt{b^2 - 4c}}{2} \]

Check if \(t_0, t_1 > 0 \) (ray)
Return \(\min(t_0, t_1) \)
Ray-Sphere Intersection III

• For lighting, calculate unit normal

\[n = \frac{1}{r} \left[(x_i - x_c) \ (y_i - y_c) \ (z_i - z_c) \right]^T \]

• Negate if ray originates inside the sphere!
• Note possible problems with roundoff errors
Simple Optimizations

• Factor common subexpressions

• Compute only what is necessary
 – Calculate $b^2 - 4c$, abort if negative
 – Compute normal only for closest intersection
 – Other similar optimizations
Ray-Quadric Intersection

- Quadric $f(p) = f(x, y, z) = 0$, where f is polynomial of order 2
- Sphere, ellipsoid, paraboloid, hyperboloid, cone, cylinder
- Closed form solution as for sphere
- Important case for modelling in ray tracing
- Combine with CSG
Ray-Polygon Intersection I

• Assume planar polygon in 3D
 1. Intersect ray with plane containing polygon
 2. Check if intersection point is inside polygon

• Plane
 – Implicit form: \(ax + by + cz + d = 0 \)
 – Unit normal: \(n = [a \ b \ c]^T \) with \(a^2 + b^2 + c^2 = 1 \)

• Substitute:
 \[
 a(x_0 + x_d t) + b(y_0 + y_d t) + c(z_0 + z_d t) + d = 0
 \]

• Solve:
 \[
 t = \frac{-(ax_0 + by_0 + cz_0 + d)}{ax_d + by_d + cz_d}
 \]
Ray-Polygon Intersection II

• Substitute t to obtain intersection point in plane

• Rewrite using dot product

\[t = \frac{-(ax_0 + by_0 + cz_0 + d)}{ax_d + by_d + cz_d} = \frac{-(n \cdot p_0 + d)}{n \cdot d} \]

• If $n \cdot d = 0$, no intersection (ray parallel to plane)

• If $t \leq 0$, the intersection is behind ray origin
Test if point inside polygon

- Use even-odd rule or winding rule

- Easier if polygon is in 2D (project from 3D to 2D)

- Easier for triangles (tessellate polygons)
Point-in-triangle testing

• Critical for polygonal models

• Project the triangle, and point of plane intersection, onto one of the planes $x = 0$, $y = 0$, or $z = 0$
 (pick a plane not perpendicular to triangle)
 (such a choice always exists)

• Then, do the 2D test in the plane, by computing barycentric coordinates
 (follows next)
Outline

• Ray-Surface Intersections
• Special cases: sphere, polygon
• Barycentric Coordinates
Interpolated Shading for Ray Tracing

• Assume we know normals at vertices
• How do we compute normal of interior point?
• Need linear interpolation between 3 points
• Barycentric coordinates
• Yields same answer as scan conversion
Barycentric Coordinates in 1D

- Linear interpolation
 - $p(t) = (1 - t)p_1 + t p_2, \ 0 \leq t \leq 1$
 - $p(t) = \alpha p_1 + \beta p_2$ where $\alpha + \beta = 1$
 - p is between p_1 and p_2 iff $0 \leq \alpha, \beta \leq 1$

- Geometric intuition
 - Weigh each vertex by ratio of distances from ends

- α, β are called barycentric coordinates
Barycentric Coordinates in 2D

• Now, we have 3 points instead of 2

\[p = \alpha \ p_1 + \beta \ p_2 + \gamma \ p_3 \]

• Define 3 barycentric coordinates, \(\alpha, \beta, \gamma \)

• \(p \) inside triangle iff \(0 \leq \alpha, \beta, \gamma \leq 1, \alpha + \beta + \gamma = 1 \)

• How do we calculate \(\alpha, \beta, \gamma \) given \(p \)?
Barycentric Coordinates for Triangle

• Coordinates are ratios of triangle areas

\[\alpha = \frac{\text{Area}(\text{CC}_1\text{C}_2)}{\text{Area}(\text{C}_0\text{C}_1\text{C}_2)} \]

\[\beta = \frac{\text{Area}(\text{C}_0\text{CC}_2)}{\text{Area}(\text{C}_0\text{C}_1\text{C}_2)} \]

\[\gamma = \frac{\text{Area}(\text{C}_0\text{C}_1\text{C})}{\text{Area}(\text{C}_0\text{C}_1\text{C}_2)} = 1 - \alpha - \beta \]

• Areas in these formulas should be signed, depending on clockwise (-) or anti-clockwise orientation (+) of the triangle! Very important for point-in-triangle test.
Computing Triangle Area in 3D

• Use cross product
• Parallelogram formula
• Area(ABC) = (1/2) |(B – A) \times (C – A)|
• How to get correct sign for barycentric coordinates?
 – tricky, but possible:
 compare directions of vectors (B – A) \times (C – A), for
 triangles CC_1C_2 vs C_0C_1C_2, etc.
 (either 0 (sign+) or 180 deg (sign-) angle)
 – easier alternative: project to 2D, use 2D formula
 – projection to 2D preserves barycentric coordinates
Computing Triangle Area in 2D

• Suppose we project the triangle to xy plane

• \(\text{Area(xy-projection(ABC))} = \)

\[(1/2) \left((b_x - a_x)(c_y - a_y) - (c_x - a_x)(b_y - a_y) \right) \]

• This formula gives correct sign (important for barycentric coordinates)
Summary

• Ray-Surface Intersections
• Special cases: sphere, polygon
• Barycentric Coordinates
Class video,
Programming Assignment 2