CSCI 480 Computer Graphics
Lecture 15

Ray Tracing

Ray Casting
Shadow Rays
Reflection and Transmission
[Ch. 13.2 - 13.3]

March 19, 2012
Jernej Barbic
University of Southern California

http://www-bcf.usc.edu/~jbarbic/cs480-s12/
Local Illumination

- Object illuminations are independent
- No light scattering between objects
- No real shadows, reflection, transmission
- OpenGL pipeline uses this
Global Illumination

- Ray tracing (highlights, reflection, transmission)
- Radiosity (surface interreflections)
- Photon mapping
- Precomputed Radiance Transfer (PRT)
Object Space:

• Graphics pipeline: for each object, render
 – Efficient pipeline architecture, real-time
 – Difficulty: object interactions (shadows, reflections, etc.)

Image Space:

• Ray tracing: for each pixel, determine color
 – Pixel-level parallelism
 – Difficulty: very intensive computation, usually off-line
First idea: Forward Ray Tracing

• Shoot (many) light rays from each light source
• Rays bounce off the objects
• Simulates paths of photons
• Problem: many rays will miss camera and not contribute to image!
• This algorithm is not practical
Backward Ray Tracing

• Shoot one ray from camera through each pixel in image plane
Generating Rays

• Camera is at (0,0,0) and points in the negative z-direction
• Must determine coordinates of image corners in 3D
Generating Rays

center of projection (COP)

field of view angle (fov)

image plane

aspect ratio = w / h

ray

side view

frontal view

w

h

y

z

x
Generating Rays

\[
y = \tan(\text{fov}/2) \\
z = -1
\]
Generating Rays

\[x = \pm a \tan(\text{fov}/2) \]
\[y = \pm \tan(\text{fov}/2) \]
\[z = -1 \]

where \(a = \text{aspect ratio} = \frac{w}{h} \)
Determining Pixel Color

1. Phong model (local as before)
2. Shadow rays
3. Specular reflection
4. Specular transmission

Steps (3) and (4) require recursion.
Shadow Rays

- Determine if light “really” hits surface point
- Cast **shadow ray** from surface point to each light
- If shadow ray hits opaque object, no contribution from that light
- This is essentially improved diffuse reflection
Phong Model

• If shadow ray can reach to the light, apply a standard Phong model

\[I = L \left(k_d(l \cdot n) + k_s(r \cdot v)^\alpha \right) \]
Where is Phong model applied in this example?
Which shadow rays are blocked?
Reflection Rays

- For specular component of illumination
- Compute reflection ray (recall: backward!)
- Call ray tracer recursively to determine color
Angle of Reflection

- Recall: incoming angle = outgoing angle
- \(r = 2(l \cdot n) n - l \)
- Compute only for surfaces that are reflective
Reflections Example

www.yafaray.org
Transmission Rays

- Calculate light transmitted through surfaces
- Example: water, glass
- Compute transmission ray
- Call ray tracer recursively to determine color
Transmitted Light

- Index of refraction is speed of light, relative to speed of light in vacuum
 - Vacuum: 1.0 (per definition)
 - Air: 1.000277 (approximate to 1.0)
 - Water: 1.33
 - Glass: 1.49

- Compute t using Snell’s law
 - $n_l = \text{index for upper material}$
 - $n_t = \text{index for lower material}$

\[
\frac{\sin(u_l)}{\sin(u_t)} = \frac{n_t}{n_l} = \eta
\]
Translucency

• Most real objects are not transparent, but blur the background image

• Scatter light on other side of surface

• Use stochastic sampling (called distributed ray tracing)
Transmission + Translucency Example

www.povray.org
The Ray Casting Algorithm

• Simplest case of ray tracing
 1. For each pixel \((x,y)\), fire a ray from COP through \((x,y)\)
 2. For each ray & object, calculate closest intersection
 3. For closest intersection point \(p\)
 - Calculate surface normal
 - For each light source, fire shadow ray
 - For each unblocked shadow ray, evaluate local Phong model for that light, and add the result to pixel color

• Critical operations
 - Ray-surface intersections
 - Illumination calculation
Recursive Ray Tracing

• Also calculate specular component
 – Reflect ray from eye on specular surface
 – Transmit ray from eye through transparent surface
• Determine color of incoming ray by recursion
• Trace to fixed depth
• Cut off if contribution below threshold
Ray Tracing Assessment

• Global illumination method
• Image-based
• Pluses
 – Relatively accurate shadows, reflections, refractions
• Minuses
 – Slow (per pixel parallelism, not pipeline parallelism)
 – Aliasing
 – Inter-object diffuse reflections require many bounces
Raytracing Example II

www.povray.org
Raytracing Example III

www.yafaray.org
Raytracing Example IV

www.povray.org
Summary

• Ray Casting
• Shadow Rays and Local Phong Model
• Reflection
• Transmission

• Next lecture: Geometric queries