CSCI 480 Computer Graphics
Lecture 13

Rasterization

Rasterization (scan conversion)
- Final step in pipeline: rasterization
- From screen coordinates (float) to pixels (int)
- Writing pixels into frame buffer
- Separate buffers:
 - depth (z-buffer),
 - display (frame buffer),
 - shadows (stencil buffer),
 - blending (accumulation buffer)

Rasterizing a line

Digital Differential Analyzer (DDA)
- Represent line as
 \[y = mx + b \]
 where
 \[m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x} \]
- Then, if \(\Delta x = 1 \) pixel,
 we have \(\Delta y = m \Delta x = m \)

Digital Differential Analyzer
- Assume write_pixel(int x, int y, int value)
 for (i = x1; i <= x2; i++)
 {
 y += m;
 write_pixel(i, round(y), color);
 }
- Problems:
 - Requires floating point addition
 - Missing pixels with steep slopes: slope restriction needed

Digital Differential Analyzer (DDA)
- Assume \(0 \leq m \leq 1 \)
- Exploit symmetry
- Distinguish special cases
 But still requires floating point additions!
Bresenham's Algorithm I
- Eliminate floating point addition from DDA
- Assume again 0 ≤ m ≤ 1
- Assume pixel centers halfway between integers

Bresenham's Algorithm II
- Decision variable a – b
 - If a – b > 0 choose lower pixel
 - If a – b ≤ 0 choose higher pixel
- Goal: avoid explicit computation of a – b
- Step 1: re-scale d = (x₂ – x₁)(a – b) = Δx(a – b)
- d is always integer

Bresenham's Algorithm III
- Compute d at step k + 1 from d at step k!
- Case: j did not change (dₖ > 0)
 - a decreases by m, b increases by m
 - (a – b) decreases by 2m = 2(Δy/Δx)
 - Δx(a-b) decreases by 2Δy

Bresenham's Algorithm IV
- Case: j did change (dₖ ≤ 0)
 - a decreases by m-1, b increases by m-1
 - (a – b) decreases by 2m = 2(Δy/Δx – 1)
 - Δx(a-b) decreases by 2(Δy - Δx)

Bresenham's Algorithm V
- So dₖ₊₁ = dₖ – 2Δy if dₖ > 0
- And dₖ₊₁ = dₖ – 2(Δy – Δx) if dₖ ≤ 0
- Final (efficient) implementation:

```c
void draw_line(int x1, int y1, int x2, int y2) {
    int x, y = y1;
    int dx = 2*(x2-x1), dy = 2*(y2-y1);
    int dydx = dy-dx, D = (dydx)/2;
    for (x = x1; x <= x2; x++) {
        write_pixel(x, y, color);
        if (D > 0) D -= dy;
        else {y++; D -= dydx;}
    }
}
```

Bresenham's Algorithm VI
- Need different cases to handle m > 1
- Highly efficient
- Easy to implement in hardware and software
- Widely used
Outline

• Scan Conversion for Lines
• Scan Conversion for Polygons
• Antialiasing

Scan Conversion of Polygons

• Multiple tasks:
 – Filling polygon (inside/outside)
 – Pixel shading (color interpolation)
 – Blending (accumulation, not just writing)
 – Depth values (z-buffer hidden-surface removal)
 – Texture coordinate interpolation (texture mapping)
• Hardware efficiency is critical
• Many algorithms for filling (inside/outside)
• Much fewer that handle all tasks well

Filling Convex Polygons

• Find top and bottom vertices
• List edges along left and right sides
• For each scan line from bottom to top
 – Find left and right endpoints of span, xl and xr
 – Fill pixels between xl and xr
 – Can use Bresenham’s algorithm to update xl and xr

Concave Polygons: Odd-Even Test

• Approach 1: odd-even test
• For each scan line
 – Find all scan line/polygon intersections
 – Sort them left to right
 – Fill the interior spans between intersections
• Parity rule: inside after an odd number of crossings

Edge vs Scan Line Intersections

• Brute force: calculate intersections explicitly
• Incremental method (Bresenham’s algorithm)
• Caching intersection information
 – Edge table with edges sorted by \(y_{\text{min}} \)
 – Active edges, sorted by \(x \)-intersection, left to right
• Process image from smallest \(y_{\text{min}} \) up

Concave Polygons: Tessellation

• Approach 2: divide non-convex, non-flat, or non-simple polygons into triangles
• OpenGL specification
 – Need accept only simple, flat, convex polygons
 – Tessellate explicitly with tessellator objects
 – Implicitly if you are lucky
• Most modern GPUs scan-convert only triangles
Flood Fill

- Draw outline of polygon
- Pick color seed
- Color surrounding pixels and recurse
- Must be able to test boundary and duplication
- More appropriate for drawing than rendering

Outline

- Scan Conversion for Lines
- Scan Conversion for Polygons
- Antialiasing

Aliasing

- Artifacts created during scan conversion
- Inevitable (going from continuous to discrete)
- Antialiasing (name from digital signal processing): we sample a continues image at grid points
- Effect
 - Jagged edges
 - Moire patterns

More Aliasing

Aliasing (name from digital signal processing): we sample a continues image at grid points
- Effect
 - Jagged edges
 - Moire patterns

Antialiasing for Line Segments

- Use area averaging at boundary

- (c) is aliased, magnified
- (d) is antialiased, magnified

Antialiasing by Supersampling

- Mostly for off-line rendering (e.g., ray tracing)
- Render, say, 3x3 grid of mini-pixels
- Average results using a filter
- Can be done adaptively
 - Stop if colors are similar
 - Subdivide at discontinuities
Supersampling Example

• Other improvements
 – Stochastic sampling: avoid sample position repetitions
 – Stratified sampling (jittering): perturb a regular grid of samples

Temporal Aliasing

• Sampling rate is frame rate (30 Hz for video)
• Example: spokes of wagon wheel in movies
• Solution: supersample in time and average
 – Fast-moving objects are blurred
 – Happens automatically with real hardware (photo and video cameras)
 • Exposure time is important (shutter speed)
 – Effect is called motion blur

Wagon Wheel Effect

Motion Blur Example

Achieve by stochastic sampling in time

Source: YouTube

Motion Blur Example

T. Porter, Pixar, 1984
16 samples / pixel / timestep

Summary

• Scan Conversion for Polygons
 – Basic scan line algorithm
 – Convex vs concave
 – Odd-even rules, tessellation
• Antialiasing (spatial and temporal)
 – Area averaging
 – Supersampling
 – Stochastic sampling