Splines

Hermite Splines
Bezier Splines
Catmull-Rom Splines
Other Cubic Splines

[Angel Ch 12.4-12.12]
Roller coaster

• Next programming assignment involves creating a 3D roller coaster animation

• We must model the 3D curve describing the roller coaster, but how?
Modeling Complex Shapes

• We want to build models of very complicated objects

• Complexity is achieved using simple pieces
 – polygons,
 – parametric curves and surfaces, or
 – implicit curves and surfaces

• This lecture: parametric curves
What Do We Need From Curves in Computer Graphics?

• Local control of shape (so that easy to build and modify)
• Stability
• Smoothness and continuity
• Ability to evaluate derivatives
• Ease of rendering
Curve Representations

- **Explicit:** $y = f(x)$
 - Must be a function (single-valued)
 - Big limitation—vertical lines?

- **Parametric:** $(x, y) = (f(u), g(u))$
 - Easy to specify, modify, control
 - Extra “hidden” variable u, the parameter

- **Implicit:** $f(x, y) = 0$
 - y can be a multiple valued function of x
 - Hard to specify, modify, control

\[
x^2 + y^2 - r^2 = 0
\]
Parameterization of a Curve

- **Parameterization** of a curve: how a change in u moves you along a given curve in xyz space.

- Parameterization is not unique. It can be slow, fast, with continuous / discontinuous speed, clockwise (CW) or CCW…

![Diagram](image-url)
Polynomial Interpolation

• An n-th degree polynomial fits a curve to $n+1$ points
 – called Lagrange Interpolation
 – result is a curve that is too wiggly, change to any control point affects entire curve (non-local)
 – this method is poor

• We usually want the curve to be as smooth as possible
 – minimize the wiggles
 – high-degree polynomials are bad
Splines: Piecewise Polynomials

• A spline is a *piecewise polynomial*: Curve is broken into consecutive segments, each of which is a low-degree polynomial interpolating (passing through) the control points.

• *Cubic* piecewise polynomials are the most common:
 – They are the lowest order polynomials that
 1. interpolate two points and
 2. allow the gradient at each point to be defined (C¹ continuity is possible).
 – Piecewise definition gives local control.
 – Higher or lower degrees are possible, of course.
Piecewise Polynomials

• **Spline**: many polynomials pieced together
• **Want to make sure they fit together nicely**

- C_0 continuity: Continuous in position
- C_0 & C_1 continuity: Continuous in position and tangent vector
- C_0 & C_1 & C_2 continuity: Continuous in position, tangent, and curvature
Splines

- **Types of splines:**
 - Hermite Splines
 - Bezier Splines
 - Catmull-Rom Splines
 - Natural Cubic Splines
 - B-Splines
 - NURBS

- Splines can be used to model both curves and surfaces
Cubic Curves in 3D

- Cubic polynomial:
 \[p(u) = au^3 + bu^2 + cu + d = [u^3 \ u^2 \ u \ 1] [a \ b \ c \ d]^T \]
 - \(a, b, c, d\) are 3-vectors, \(u\) is a scalar

- Three cubic polynomials, one for each coordinate:
 - \(x(u) = a_x u^3 + b_x u^2 + c_x u + d_x\)
 - \(y(u) = a_y u^3 + b_y u^2 + c_y u + d_y\)
 - \(z(u) = a_z u^3 + b_z u^2 + c_z u + d_z\)

- In matrix notation:
 \[
 \begin{bmatrix}
 x(u) & y(u) & z(u)
 \end{bmatrix}
 =
 \begin{bmatrix}
 u^3 & u^2 & u & 1
 \end{bmatrix}
 \begin{bmatrix}
 a_x & a_y & a_z \\
 b_x & b_y & b_z \\
 c_x & c_y & c_z \\
 d_x & d_y & d_z
 \end{bmatrix}
 \]

- Or simply: \(p = [u^3 \ u^2 \ u \ 1] \ A \)
Cubic Hermite Splines

We want a way to specify the end points and the slope at the end points!
Deriving Hermite Splines

• Four constraints: value and slope (in 3-D, position and tangent vector) at beginning and end of interval [0,1]:

\[p(0) = p_1 = (x_1, y_1, z_1) \]
\[p(1) = p_2 = (x_2, y_2, z_2) \]
\[p'(0) = \bar{p}_1 = (\bar{x}_1, \bar{y}_1, \bar{z}_1) \]
\[p'(1) = \bar{p}_2 = (\bar{x}_2, \bar{y}_2, \bar{z}_2) \]

• Assume cubic form: \(p(u) = au^3 + bu^2 + cu + d \)

• Four unknowns: \(a, b, c, d \)
Deriving Hermite Splines

• Assume cubic form: \(p(u) = au^3 + bu^2 + cu + d \)

 \[p_1 = p(0) = d \]
 \[p_2 = p(1) = a + b + c + d \]
 \[\overline{p}_1 = p'(0) = c \]
 \[\overline{p}_2 = p'(1) = 3a + 2b + c \]

• Linear system: 12 equations for 12 unknowns (however, can be simplified to 4 equations for 4 unknowns)

• Unknowns: \(a, b, c, d \) (each of \(a, b, c, d \) is a 3-vector)
Deriving Hermite Splines

\[d = p_1 \]
\[a + b + c + d = p_2 \]
\[c = p_1 \]
\[3a + 2b + c = p_2 \]

Rewrite this 12x12 system as a 4x4 system:

\[
\begin{bmatrix}
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
3 & 2 & 1 & 0 \\
\end{bmatrix}
\begin{bmatrix}
a_x & a_y & a_z \\
b_x & b_y & b_z \\
c_x & c_y & c_z \\
d_x & d_y & d_z \\
\end{bmatrix}
=
\begin{bmatrix}
x_1 & y_1 & z_1 \\
x_2 & y_2 & z_2 \\
\overline{x_1} & \overline{y_1} & \overline{z_1} \\
\overline{x_2} & \overline{y_2} & \overline{z_2} \\
\end{bmatrix}
\]
The Cubic Hermite Spline Equation

• After inverting the 4x4 matrix, we obtain:

\[
\begin{bmatrix}
 x \\ y \\ z
\end{bmatrix} = \begin{bmatrix}
 u^3 & u^2 & u & 1
\end{bmatrix} \begin{bmatrix}
 2 & -2 & 1 & 1 \\
 -3 & 3 & -2 & -1 \\
 0 & 0 & 1 & 0 \\
 1 & 0 & 0 & 0
\end{bmatrix} \begin{bmatrix}
 x_1 & y_1 & z_1 \\
 x_2 & y_2 & z_2 \\
 \bar{x}_1 & \bar{y}_1 & \bar{z}_1 \\
 \bar{x}_2 & \bar{y}_2 & \bar{z}_2
\end{bmatrix}
\]

- point on the spline
- parameter vector
- basis
- control matrix (what the user gets to pick)

• This form is typical for splines
 - basis matrix and meaning of control matrix change with the spline type
Every cubic Hermite spline is a linear combination (blend) of these 4 functions.
Piecing together Hermite Splines

It's easy to make a multi-segment Hermite spline:

– each segment is specified by a cubic Hermite curve
– just specify the position and tangent at each “joint” (called *knot*)
– the pieces fit together with matched positions and first derivatives
– gives C1 continuity
Hermite Splines in Adobe Illustrator
Bezzer Splines

• Variant of the Hermite spline
• Instead of endpoints and tangents, four control points
 – points P1 and P4 are on the curve
 – points P2 and P3 are off the curve
 – \(p(0) = P1, p(1) = P4, \)
 – \(p'(0) = 3(P2-P1), p'(1) = 3(P4 - P3) \)
• Basis matrix is derived from the Hermite basis (or from scratch)
• Convex Hull property: curve contained within the convex hull of control points
• Scale factor “3” is chosen to make “velocity” approximately constant
The Bezier Spline Matrix

\[
\begin{bmatrix}
 x & y & z
\end{bmatrix} = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \begin{bmatrix}
 2 & -2 & 1 & 1 \\
 -3 & 3 & -2 & -1 \\
 0 & 0 & 1 & 0 \\
 1 & 0 & 0 & 0
\end{bmatrix} \begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 0 & 0 & 1 \\
 -3 & 3 & 0 & 0 \\
 0 & 0 & -3 & 3
\end{bmatrix} \begin{bmatrix}
 x_1 & y_1 & z_1 \\
 x_2 & y_2 & z_2 \\
 x_3 & y_3 & z_3 \\
 x_4 & y_4 & z_4
\end{bmatrix}
\]

Hermite basis Bezier to Hermite Bezier control matrix
Bezier Blending Functions

Also known as the order 4, degree 3 Bernstein polynomials
Nonnegative, sum to 1
The entire curve lies inside the polyhedron bounded by the control points

\[p(t) = \begin{bmatrix} (1-t)^3 \\ 3t(1-t)^2 \\ 3t^2(1-t) \\ t^3 \end{bmatrix}^T \begin{bmatrix} p_1 \\ p_2 \\ p_3 \\ p_4 \end{bmatrix} \]
DeCasteljau Construction

Efficient algorithm to evaluate Bezier splines. Similar to Horner rule for polynomials. Can be extended to interpolations of 3D rotations.
Catmull-Rom Splines

• Roller-coaster (next programming assignment)
• With Hermite splines, the designer must arrange for consecutive tangents to be collinear, to get C^1 continuity. Similar for Bezier. This gets tedious.
• Catmull-Rom: an interpolating cubic spline with built-in C^1 continuity.
• Compared to Hermite/Bezier: fewer control points required, but less freedom.
Constructing the Catmull-Rom Spline

Suppose we are given n control points in 3-D: \(p_1, p_2, \ldots, p_n \).

For a Catmull-Rom spline, we set the tangent at \(p_i \) to \(s^*(p_{i+1} - p_{i-1}) \) for \(i=2, \ldots, n-1 \), for some \(s \) (often \(s=0.5 \)).

\(s \) is tension parameter: determines the magnitude (but not direction!) of the tangent vector at point \(p_i \).

What about endpoint tangents? Use extra control points \(p_0, p_{n+1} \).

Now we have positions and tangents at each knot. This is a Hermite specification. Now, just use Hermite formulas to derive the spline.

Note: curve between \(p_i \) and \(p_{i+1} \) is completely determined by \(p_{i-1}, p_i, p_{i+1}, p_{i+2} \).
Catmull-Rom Spline Matrix

$\begin{bmatrix} x & y & z \end{bmatrix} = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \begin{bmatrix} -s & 2 - s & s - 2 & s \\ 2s & s - 3 & 3 - 2s & -s \\ -s & 0 & s & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \\ x_4 & y_4 & z_4 \end{bmatrix}$

- Derived in way similar to Hermite and Bezier
- Parameter s is typically set to $s=1/2$.
Splines with More Continuity?

• So far, only C^1 continuity.
• How could we get C^2 continuity at control points?

• Possible answers:
 – Use higher degree polynomials
 degree 4 = quartic, degree 5 = quintic, … but these get computationally expensive, and sometimes wiggly
 – Give up local control \rightarrow natural cubic splines
 A change to any control point affects the entire curve
 – Give up interpolation \rightarrow cubic B-splines
 Curve goes near, but not through, the control points
Comparison of Basic Cubic Splines

<table>
<thead>
<tr>
<th>Type</th>
<th>Local Control</th>
<th>Continuity</th>
<th>Interpolation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hermite</td>
<td>YES</td>
<td>C1</td>
<td>YES</td>
</tr>
<tr>
<td>Bezier</td>
<td>YES</td>
<td>C1</td>
<td>YES</td>
</tr>
<tr>
<td>Catmull-Rom</td>
<td>YES</td>
<td>C1</td>
<td>YES</td>
</tr>
<tr>
<td>Natural</td>
<td>NO</td>
<td>C2</td>
<td>YES</td>
</tr>
<tr>
<td>B-Splines</td>
<td>YES</td>
<td>C2</td>
<td>NO</td>
</tr>
</tbody>
</table>

Summary:

Cannot get C2, interpolation and local control with cubics
Natural Cubic Splines

• If you want 2nd derivatives at joints to match up, the resulting curves are called natural cubic splines.

• It’s a simple computation to solve for the cubics' coefficients. (See Numerical Recipes in C book for code.)

• Finding all the right weights is a global calculation (solve tridiagonal linear system).
B-Splines

• Give up interpolation
 – the curve passes near the control points
 – best generated with interactive placement (because it’s hard to guess where the curve will go)

• Curve obeys the convex hull property

• C2 continuity and local control are good compensation for loss of interpolation
B-Spline Basis

- We always need 3 more control points than the number of spline segments.

\[
M_{Bs} = \frac{1}{6} \begin{bmatrix}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 0 & 3 & 0 \\
1 & 4 & 1 & 0
\end{bmatrix}
\]

\[
G_{Bsi} = \begin{bmatrix}
P_{i-3} \\
P_{i-2} \\
P_{i-1} \\
P_i
\end{bmatrix}
\]

\[
b_1(u) \quad b_2(u) \quad b_3(u)
\]
Other Common Types of Splines

• Non-uniform Splines

• Non-Uniform Rational Cubic curves (NURBS)

• NURBS are very popular and used in many commercial packages
How to Draw Spline Curves

• Basis matrix equation allows same code to draw any spline type

• **Method 1: brute force**
 – Calculate the coefficients
 – For each cubic segment, vary u from 0 to 1 (fixed step size)
 – Plug in u value, matrix multiply to compute position on curve
 – Draw line segment from last position to current position

• What’s wrong with this approach?
 – Draws in even steps of u
 – Even steps of u does not mean even steps of x
 – Line length will vary over the curve
 – Want to bound line length
 » too long: curve looks jagged
 » too short: curve is slow to draw
• **Method 2: recursive subdivision** - vary step size to draw short lines

Subdivide(u₀,u₁,maxlinelength)
 umid = (u₀ + u₁)/2
 x₀ = F(u₀)
 x₁ = F(u₁)
 if |x₁ - x₀| > maxlinelength
 Subdivide(u₀,umid,maxlinelength)
 Subdivide(umid,u₁,maxlinelength)
 else drawline(x₀,x₁)

• **Variant on Method 2** - subdivide based on curvature
 – replace condition in “if” statement with straightness criterion
 – draws fewer lines in flatter regions of the curve
Summary

• Piecewise cubic is generally sufficient
• Define conditions on the curves and their continuity

• Most important:
 – basic curve properties
 (what are the conditions, controls, and properties for each spline type)
 – generic matrix formula for uniform cubic splines \(p(u) = u \, B \, G \)
 – given a definition, derive a basis matrix
 (do not memorize the matrices themselves)