Transformations

January 23, 2012
Jernej Barbic
University of Southern California
http://www-bcf.usc.edu/~jbarbic/cs480-s12/

CSCI 480 Computer Graphics
Lecture 4

Vector Spaces
Euclidean Spaces
Frames
Homogeneous Coordinates
Transformation Matrices
[Angel, Ch. 4]

OpenGL Transformations

OpenGL Transformation Matrices
- Model-view matrix (4x4 matrix)
- Projection matrix (4x4 matrix)

vertices in canonical 3D world coordinate system → vertices in 2D

4x4 Model-view Matrix (this lecture)
- Translate, rotate, scale objects
- Position the camera

vertices in canonical 3D world coordinate system

4x4 Projection Matrix (next lecture)
- Project from 3D to 2D

vertices in canonical 3D world coordinate system → vertices in 2D

OpenGL Transformation Matrices
- Manipulated separately in OpenGL (must set matrix mode):
 glMatrixMode (GL_MODELVIEW);
 glMatrixMode (GL_PROJECTION);
Setting the Current Model-view Matrix

- Load or post-multiply

  ```
  glMatrixMode(GL_MODELVIEW);
  glLoadIdentity(); // very common usage
  float m[16] = {...};
  glLoadMatrixf(m); // rare, advanced
  glMultMatrixf(m); // rare, advanced
  ```

- Use library functions

  ```
  glTranslatef(dx, dy, dz);
  glRotatef(angle, vx, vy, vz);
  glScalef(sx, sy, sz);
  ```

The rendering coordinate system

Initially (after `glLoadIdentity()`) :

rendering coordinate system = world coordinate system

The rendering coordinate system

```glTranslatef(x, y, z);```;

The rendering coordinate system

glRotatef(angle, ax, ay, az);

The rendering coordinate system

glScalef(sx, sy, sz);
OpenGL code

glMatrixMode (GL_MODELVIEW);
glLoadIdentity();
glTranslatef(x, y, z);
glRotatef(angle, ax, ay, az);
glScalef(sx, sy, sz);
renderBunny();

Rendering more objects

Solution 1:
Find glTranslate(...), glRotatef(...),
glScalef(...)  

Solution 2: gl{Push,Pop}Matrix

glMatrixMode (GL_MODELVIEW);
glLoadIdentity();
// render first bunny
glPushMatrix(); // store current matrix
glTranslatef(...);
glRotatef(...);
renderBunny();
glPopMatrix(); // pop matrix
// render second bunny
glPushMatrix(); // store current matrix
glTranslatef(...);
glRotatef(...);
renderBunny();
glPopMatrix(); // pop matrix

3D Math Review

Scalars
- Scalars $\alpha$, $\beta$, $\gamma$ from a scalar field
- Operations $\alpha + \beta$, $\alpha \cdot \beta$, $0$, $1$, $-\alpha$, $\frac{1}{\alpha}$
- "Expected" laws apply
- Examples: rationals or reals with addition and multiplication
**Vectors**

- Vectors \( u, v, w \) from a vector space
- Vector addition \( u + v \), subtraction \( u - v \)
- Zero vector \( 0 \)
- Scalar multiplication \( \alpha \ v \)

**Euclidean Space**

- Vector space over real numbers
- Three-dimensional in computer graphics
- Dot product: \( \alpha = u \cdot v = u_1 v_1 + u_2 v_2 + u_3 v_3 \)
  - \( 0 \cdot 0 = 0 \)
  - \( u, v \) are orthogonal if \( u \cdot v = 0 \)
  - \( |v|^2 = v \cdot v \) defines \( |v| \), the length of \( v \)

**Lines and Line Segments**

- Parametric form of line: \( P(\alpha) = P_0 + \alpha \ d \)
- Line segment between \( Q \) and \( R \):
  \[ P(\alpha) = (1-\alpha) \ Q + \alpha \ R \text{ for } 0 \leq \alpha \leq 1 \]

**Convex Hull**

- Convex hull defined by
  \[ P = \alpha_1 P_1 + \ldots + \alpha_n P_n \]
  for \( \alpha_1 + \ldots + \alpha_n = 1 \)
  and \( 0 \leq \alpha_i \leq 1, \ i = 1, \ldots, n \)

**Projection**

- Dot product projects one vector onto another vector
  \[ u \cdot v = u_1 v_1 + u_2 v_2 + u_3 v_3 = |u| |v| \cos(\theta) \]
  \[ \text{proj}_v \ u = (u \cdot v) \ v / |v|^2 \]

**Cross Product**

- \( [a \times b] = |a| |b| |\sin(\theta)| \)
- Cross product is perpendicular to both \( a \) and \( b \)
- Right-hand rule

Plane
- Plane defined by point $P_0$ and vectors $u$ and $v$
- $u$ and $v$ should not be parallel
- Parametric form:
  \[ T(\alpha, \beta) = P_0 + \alpha u + \beta v \]
  ($\alpha$ and $\beta$ are scalars)
- $n = u \times v / |u \times v|$ is the normal
- $n \cdot (P - P_0) = 0$ if and only if $P$ lies in plane

Coordinate Systems
- Let $v_1, v_2, v_3$ be three linearly independent vectors in a 3-dimensional vector space
- Can write any vector $w$ as
  \[ w = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 \]
  for some scalars $\alpha_1, \alpha_2, \alpha_3$

Frames
- Frame = origin $P_0$ + coordinate system
- Any point $P = P_0 + \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3$

In Practice, Frames are Often Orthogonal

Change of Coordinate System
- Bases \{${u_1, u_2, u_3}$\} and \{${v_1, v_2, v_3}$\)
- Express basis vectors $u_i$ in terms of $v_j$
  \[
  u_1 = \gamma_{11} v_1 + \gamma_{12} v_2 + \gamma_{13} v_3 \\
  u_2 = \gamma_{21} v_1 + \gamma_{22} v_2 + \gamma_{23} v_3 \\
  u_3 = \gamma_{31} v_1 + \gamma_{32} v_2 + \gamma_{33} v_3
  \]
- Represent in matrix form:
  \[
  \begin{bmatrix}
  u_1 \\
  u_2 \\
  u_3
  \end{bmatrix} = M
  \begin{bmatrix}
  v_1 \\
  v_2 \\
  v_3
  \end{bmatrix}
  \]
  \[
  M = \begin{bmatrix}
  \gamma_{11} & \gamma_{12} & \gamma_{13} \\
  \gamma_{21} & \gamma_{22} & \gamma_{23} \\
  \gamma_{31} & \gamma_{32} & \gamma_{33}
  \end{bmatrix}
  \]

Representing 3D transformations (and model-view matrices)
Linear Transformations

- 3 x 3 matrices represent linear transformations
  \[ a = Mb \]
- Can represent rotation, scaling, and reflection
- Cannot represent translation

\[ M = \begin{bmatrix}
  \gamma_1 & \gamma_2 & \gamma_3 \\
  \gamma_2 & \gamma_2 & \gamma_3 \\
  \gamma_3 & \gamma_2 & \gamma_3 \\
\end{bmatrix} \]

In order to represent rotations, scales AND translations:

Homogeneous Coordinates

- Augment \([\alpha_1, \alpha_2, \alpha_3]^T\) by adding a fourth component (1):
  \[ p = [\alpha_1, \alpha_2, \alpha_3, 1]^T \]
- Homogeneous property:
  \[ p = [\alpha_1, \alpha_2, \alpha_3, 1]^T = [\beta \alpha_1, \beta \alpha_2, \beta \alpha_3, \beta]^T, \]
  for any scalar \(\beta \neq 0\)

Homogeneous coordinates are transformed by 4x4 matrices

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>world</td>
<td>4-vector</td>
</tr>
<tr>
<td>p = [x, y, z, 1]^T</td>
<td>q = A p</td>
</tr>
<tr>
<td>4-vector</td>
<td>4x4 matrix</td>
</tr>
</tbody>
</table>

Affine Transformations (4x4 matrices)

- Translation
- Rotation
- Scaling
- Any composition of the above
- Later: projective (perspective) transformations
  - Also expressible as 4 x 4 matrices!

Translation

- \(q = p + d\) where \(d = [\alpha_x, \alpha_y, \alpha_z, 0]^T\)
- \(p = [x, y, z, 1]^T\)
- \(q = [x', y', z', 1]^T\)
- Express in matrix form \(q = T p\) and solve for \(T\)

\[
T = \begin{bmatrix}
1 & 0 & 0 & \alpha_x \\
0 & 1 & 0 & \alpha_y \\
0 & 0 & 1 & \alpha_z \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

Scaling

- \(x' = \beta_x x\)
- \(y' = \beta_y y\)
- \(z' = \beta_z z\)
- Express as \(q = S p\) and solve for \(S\)

\[
S = \begin{bmatrix}
\beta_x & 0 & 0 & 0 \\
0 & \beta_y & 0 & 0 \\
0 & 0 & \beta_z & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]
Rotation in 2 Dimensions

- Rotation by $\theta$ about the origin
- $x' = x \cos \theta - y \sin \theta$
- $y' = x \sin \theta + y \cos \theta$

- Express in matrix form:
\[
\begin{bmatrix}
  x' \\
  y'
\end{bmatrix}
= \begin{bmatrix}
  \cos(\theta) & -\sin(\theta) \\
  \sin(\theta) & \cos(\theta)
\end{bmatrix}
\begin{bmatrix}
  x \\
  y
\end{bmatrix}
\]
- Note that the determinant is 1

Rotation in 3 Dimensions

- Orthogonal matrices:
  \[RR^T = R^TR = I\]
  \[\det(R) = 1\]

- Affine transformation:
\[
A = \begin{bmatrix}
  R_{11} & R_{12} & R_{13} & 0 \\
  R_{21} & R_{22} & R_{23} & 0 \\
  R_{31} & R_{32} & R_{33} & 0 \\
  0 & 0 & 0 & 1
\end{bmatrix}
\]

Affine Matrices are Composed by Matrix Multiplication

- $A = A_1 A_2 A_3$
- Applied from right to left
- $A \ p = (A_1 A_2 A_3) \ p = A_1 (A_2 (A_3 \ p))$
- When calling `glTranslatef`, `glRotatef`, or `glScalef`, OpenGL forms the corresponding 4x4 matrix, and multiplies the current modelview matrix with it.

Summary

- OpenGL Transformation Matrices
- Vector Spaces
- Frames
- Homogeneous Coordinates
- Transformation Matrices