CSCI 480 Computer Graphics
Lecture 1

Course Overview

January 9, 2012
Jernej Barbic
University of Southern California
http://www-bcf.usc.edu/~jbarbic/cs480-s12/

Course Information On-Line
http://www-bcf.usc.edu/~jbarbic/cs480-s12/

- Schedule (slides, readings)
- Assignments (details, due dates)
- Software (libraries, hints)
- Resources (books, tutorials, links)

Blackboard:
- Forum
- Submit assignments

Course slides
http://www-bcf.usc.edu/~jbarbic/cs480-s12/

- Full-color version
- 6-slides-per-page B&W version
 -- good for printing
- Posted in advance of lectures
 -- bring to class & annotate
- Color viewing in Acrobat Reader:
 Disable "Replace Document Colors" in Preferences.Accessibility (if enabled)

About me
Assistant professor in CS
Post-doc at MIT
PhD, Carnegie Mellon University
jnb@usc.edu
Tue 2:00-3:30, SAL 230

About the teacher
Background:
BSc Mathematics
PhD Computer Science

Research interests:
graphics, animation, real-time physics,
control, sound, haptics

Teaching Assistant
Fun Shing Sin
Mon 2:00-3:00
Thu 2:00-3:00
SAL 112
Grader
Gagandeep Singh
Same office hours as TA

Prerequisites
• CSCI 102 Data Structures
• Familiarity with calculus and linear algebra
• C/C++ programming skills
• See me if you are missing any and we haven’t discussed it

Textbooks
• Interactive Computer Graphics
 A top-down approach with OpenGL, Fifth Edition
 Edward Angel, Addison-Wesley
• OpenGL Programming Guide ("Red Book")
 Basic version also available on-line (see Resources)

Grading
• 51% Programming Assignments (3x 17%)
• 19% Midterm (one sheet of notes only, in class)
• 30% Final (open book)

Academic integrity
• No collaboration!
• Do not copy any parts of any of the assignments from anyone
• Do not look at other students’ code, papers, assignments or exams
• USC Office of Student Judicial Affairs and Community Standards will be notified

Assignment Policies
• Programming assignments
 - Hand in via Blackboard by end of due date
 - Functionality and features
 - Style and documentation
 - Artistic impression
• 3 late days, usable any time during semester
• Academic integrity policy applied rigorously
Computer Graphics

One of the “core” computer science disciplines:

- Algorithms and Theory
- Artificial Intelligence
- Computer Architecture
- Computer Graphics and Visualization
- Computer Security
- Computer Systems
- Databases
- Networks
- Programming Languages
- Software Engineering

Course Overview

Theory: Computer graphics disciplines:
- Modeling: how to represent objects
- Animation: how to control and represent motion
- Rendering: how to create images of objects
- Image Processing: how to edit images

Practice: OpenGL graphics library

Not in this course:
- Human-computer interaction
- Graphic design
- DirectX API

Computer Graphics Disciplines

- Rendering
- Geometry (Modeling)
- Animation
- Image Processing

Computer Graphics Goals I

- Synthetic images indistinguishable from reality
- Practical, scientifically sound, in real time

Example: Ray Tracing

Barbic, James, SIGGRAPH 2010
Thurey, Wojtan, Gross, Turk, SIGGRAPH 2010

Example: Physics + Computational Geometry + Animation + Ray Tracing

Barbic, James, SIGGRAPH 2010
Example: Radiosity

Computer Graphics Goals II

- Creating a new reality (not necessarily scientific)
- Practical, aesthetically pleasing, in real time

Example: Illustrating Smooth Surfaces

A. Hertzmann, D. Zorin, SIGGRAPH 2000

Non-photorealistic rendering (NPR)

Example: Scene Completion

Original

Input

J. Hays, A. Efros, SIGGRAPH 2007

Scene Matched

Output

SIGGRAPH

- Main computer graphics event in the world
- Once per year
- 30,000 attendees
- Academia, industry

1. Course Overview

- Administrative Issues
- Topics Outline (next)
2. OpenGL Basics
• Primitives and attributes
• Color
• Viewing
• Control functions
• [Angel, Ch. 2]

3. Input and Interaction
• Clients and servers
• Event driven programming
• Text and fonts
• [Angel, Ch. 3]

4. Objects & Transformations
• Linear algebra review
• Coordinate systems and frames
• Rotation, translation, scaling
• Homogeneous coordinates
• OpenGL transformation matrices
• [Angel, Ch. 4]

5. Viewing and Projection
• Orthographic projection
• Perspective projection
• Camera positioning
• Projections in OpenGL
• Hidden surface removal
• [Angel, Ch. 5]

6. Hierarchical Models
• Re-using objects
• Animations
• OpenGL routines
• Parameters and transformations
• [Angel, Ch. 10]

7. Light and Shading
• Light sources
• Ambient, diffuse, and specular reflection
• Normal vectors
• Material properties in OpenGL
• Radiosity
• [Angel, Ch. 6]
8. Curves and Surfaces
- Review of 3D-calculus
- Explicit representations
- Implicit representations
- Parametric curves and surfaces
- Hermite curves and surfaces
- Bezier curves and surfaces
- Splines
- Curves and surfaces in OpenGL
- [Angel, Ch. 12]

9. Rendering
- Clipping
- Bounding boxes
- Hidden-surface removal
- Line drawing
- Scan conversion
- Antialiasing
- [Angel, Ch. 7, 8]

10. Textures and Pixels
- Texture mapping
- OpenGL texture primitives
- Bump maps
- Environment maps
- Opacity and blending
- Image filtering
- [Angel, Ch. 8]

11. Ray Tracing
- Basic ray tracing [Angel, Ch. 13]
- Spatial data structures [Angel, Ch. 10]
- Motion Blur
- Soft Shadows

12. Radiosity
- Local vs global illumination model
- Interreflection between surfaces
- Radiosity equation
- Solution methods
- [Angel Ch. 13.4-5]

13. Physically Based Models
- Particle systems
- Spring forces
- Cloth
- Collisions
- Constraints
- Fractals
- [Angel, Ch. 11]
14. Scientific Visualization

- Height fields and contours
- Isosurfaces
- Volume rendering
- Texture mapping of volumes

Guest Lecture:
TBA

"Wildcard" Lectures:
- Graphics hardware
- More on animation
- Motion capture
- Virtual reality and interaction
- Special effects in movies
- Video game programming
- Non-photo-realistic rendering

Hot Application Areas

- Special effects
- Feature animation
- PC graphics boards
- Video games
- Visualization (science, architecture, space)

Hot Research Topics

- Modeling
 - getting models from the real world
 - multi-resolution
- Animation
 - physically based simulation
 - motion capture
- Rendering:
 - more realistic: image-based modeling
 - less realistic: impressionist, pen & ink

Acknowledgments

- Jessica Hodgins (CMU)
- Frank Pfenning (CMU)
- Paul Heckbert (Nvidia)