CSCI 480 Computer Graphics
Lecture 24

Non-Photorealistic Rendering

Pen-and-ink Illustrations
Painterly Rendering
Cartoon Shading
Technical Illustrations

April 20, 2011
Jernej Barbic
University of Southern California

http://www-bcf.usc.edu/~jbarbic/cs480-s11/
Goals of Computer Graphics

• Traditional: Photorealism
• Sometimes, we want more
 – Cartoons
 – Artistic expression in paint, pen-and-ink
 – Technical illustrations
 – Scientific visualization

[Lecture next week]
Non-Photorealistic Rendering

“A means of creating imagery that does not aspire to realism” - Stuart Green

Cassidy Curtis 1998

David Gainey
Non-photorealistic Rendering

Also called:

• Expressive graphics
• Artistic rendering
• Non-realistic graphics
• Art-based rendering
• Psychographics

Source: ATI
Some NPR Categories

• Pen-and-Ink illustration
 – Techniques: cross-hatching, outlines, line art, etc.

• Painterly rendering
 – Styles: impressionist, expressionist, pointilist, etc.

• Cartoons
 – Effects: cartoon shading, distortion, etc.

• Technical illustrations
 – Characteristics: Matte shading, edge lines, etc.

• Scientific visualization
 – Methods: splatting, hedgehogs, etc.
Outline

• Pen-and-Ink Illustrations
• Painterly Rendering
• Cartoon Shading
• Technical Illustrations
Hue

- Perception of “distinct” colors by humans
 - Red
 - Blue
 - Green
 - Yellow

Hue Scale

Tone

- Perception of “brightness” of a color by humans
- Also called lightness
- Important in NPR

Pen-and-Ink Illustrations

Winkenbach and Salesin 1994
Pen-and-Ink Illustrations

- **Strokes**
 - Curved lines of varying thickness and density

- **Texture**
 - Conveyed by collection of strokes

- **Tone**
 - Perceived gray level across image or segment

- **Outline**
 - Boundary lines that disambiguate structure

Winkenbach and Salesin 1994
Rendering Pipeline: Polygonal Surfaces with NPR

3D Model → Lighting → Visible Polygons → Procedural Stroke Texture → Stroke Clipping → Outline Drawing

Camera

How much 3D information do we preserve?
Strokes and Stroke Textures

• Stroke generated by moving along straight path
• Stroke perturbed by
 – Waviness function (straightness)
 – Pressure function (thickness)
• Collected in stroke textures
 – Tone dependent
 – Resolution dependent
 – Orientation dependent
• How automatic are stroke textures?
Stroke Texture Examples

Winkenbach and Salesin 1994
Stroke Texture Operations

Scaling

Changing Viewing Direction (Anisotropic)
Indication

• Selective addition of detail

• Difficult to automate

• User places detail segments interactively
Indication Example

Input without detail

With indication

Without indication
Outlines

- Boundary or interior outlines
- Accented outlines for shadowing and relief
- Dependence on viewing direction
- Suggest shadow direction
Rendering Parametric Surfaces

• Stroke orientation and density
 – Place strokes along isoparametric lines
 – Choose density for desired tone
 – tone = width / spacing
Parametric Surface Example

Winkenbach and Salesin 1996
Hatching + standard rendering

- Constant-density hatching
- Longer smoother strokes for glass
- Varying reflection coefficient
- Smooth shading with single light
- Environment mapping

Standard rendering techniques are still important!
Orientable Textures

• Inputs
 – Grayscale image to specify desired tone
 – Direction field
 – Stroke character

• Output
 – Stroke shaded image

Salisbury et al. 1997
Orientable Stroke Texture Example

Salisbury et al. 1997
Outline

- Pen-and-Ink Illustrations
- Painterly Rendering
- Cartoon Shading
- Technical Illustrations
Painterly Rendering

• Physical simulation
 – User applies brushstrokes
 – Computer simulates media (paper + ink)

• Automatic painting
 – User provides input image or 3D model
 – User specifies painting parameters
 – Computer generates all strokes
Physical Simulation Example

Curtis et al. 1997, *Computer Generated Watercolor*
Computer-Generated Watercolor

- Complex physical phenomena for artistic effect
- Build simple approximations
- Paper generation as random height field

- Simulated effects
Fluid Dynamic Simulation

- Use water velocity, viscosity, drag, pressure, pigment concentration, paper gradient
- Paper saturation and capacity

- Discretize and use cellular automata
Interactive Painting

User input
Simulation in progress
Finished painting
Automatic Painting Example

Hertzmann 1997
Automatic Painting from Images

• Start from color image: no 3D information
• Paint in resolution-based layers
 – Blur to current resolution
 – Select brush based on current resolution
 – Find area of largest error compared to real image
 – Place stroke
 – Increase resolution and repeat
• Layers are painted coarse-to-fine
• Styles controled by parameters
Layered Painting

Blurring

Adding detail with smaller strokes
Painting Styles

• Style determined by parameters
 – Approximation thresholds
 – Brush sizes
 – Curvature filter
 – Blur factor
 – Minimum and maximum stroke lengths
 – Opacity
 – Grid size
 – Color jitter

• Encapsulate parameter settings as style
Style Examples

Source image

“Impressionist”

“Expressionist”

“Pointillist”
Some Styles

- “Impressionist”
 - No random color, $4 \leq$ stroke length ≤ 16
 - Brush sizes 8, 4, 2; approximation threshold 100
- “Expressionist”
 - Random factor 0.5, $10 \leq$ stroke length ≤ 16
 - Brush sizes 8, 4, 2; approximation threshold 50
- “Pointilist”
 - Random factor ~ 0.75, $0 \leq$ stroke length ≤ 0
 - Brush sizes 4, 2; approximation threshold 100
- Not completely convincing to artists (yet?)
Outline

• Pen-and-Ink Illustrations
• Painterly Rendering
• Cartoon Shading
• Technical Illustrations
Cartoon Shading

- Shading model in 2D cartoon
 - Use material color and shadow color
 - Present lighting cues, shape, and context
- Stylistic
- Used in many animated movies
- Real-time techniques for games

Source: Alec Rivers
Cartoon Shading as Texture Map

- Apply shading as 1D texture map

- Two-pass technique:
 Pass 1: standard shader
 Pass 2: use result from 1 as texture coordinates
Shading Variations

Gouraud
Flat shading

1 texel
Shadow

2 texels

8 texels
Shadow + highlight
Outline

• Pen-and-Ink Illustrations
• Painterly Rendering
• Cartoon Shading
• Technical Illustrations
Technical Illustrations

- Level of abstraction
 - Accent important 3D properties
 - Dimish or eliminate extraneous details
- Do not represent reality

Photo

Ruppel 1995
Conventions in Technical Illustrations

- Black edge lines
- Cool to warm shading colors
- Single light source; shadows rarely used
Technical Illustration Example

- Phong shading
- Metal shading (anisotropic)
- Edge lines
- Gooch shading (cool to warm shift gives better depth perception)

Source: Bruce Gooch
The Future

• Smart graphics
 – Design from the user’s perspective
 – HCI, AI, Perception

• Artistic graphics
 – More tools for the creative artist
 – New styles and ideas
Summary

• Beyond photorealism
 – Artistic appeal
 – Technical explanation and illustration
 – Scientific visualization
• Use all traditional computer graphics tools
• Employ them in novel ways
• Have fun!