Goals of Computer Graphics

- Traditional: Photorealism
- Sometimes, we want more
 - Cartoons
 - Artistic expression in paint, pen-and-ink
 - Technical illustrations
 - Scientific visualization
 [Lecture next week]

Non-photorealistic Rendering

“A means of creating imagery that does not aspire to realism” - Stuart Green

Pen-and-ink Illustrations
- Techniques: cross-hatching, outlines, line art, etc.
- Painterly rendering
- Styles: impressionist, expressionist, pointillist, etc.
- Cartoons
- Effects: cartoon shading, distortion, etc.
- Technical illustrations
- Characteristics: Matte shading, edge lines, etc.
- Scientific visualization
- Methods: splatting, hedgehogs, etc.

Outline

- Pen-and-Ink Illustrations
- Painterly Rendering
- Cartoon Shading
- Technical Illustrations
Hue

- Perception of “distinct” colors by humans
- Red
- Green
- Blue
- Yellow

Hue Scale

Tone

- Perception of “brightness” of a color by humans
- Also called lightness
- Important in NPR

Pen-and-Ink Illustrations

Winkenbach and Salesin 1994

Pen-and-Ink Illustrations

- Strokes
 - Curved lines of varying thickness and density
- Texture
 - Conveyed by collection of strokes
- Tone
 - Perceived gray level across image or segment
- Outline
 - Boundary lines that disambiguate structure

Pen-and-Ink Illustrations

Winkenbach and Salesin 1994

Rendering Pipeline:
Polygonal Surfaces with NPR

3D Model → Lighting → Camera

Visible Polygons

Procedural Stroke Texture

Stroke Clipping

Outline Drawing

Strokes and Stroke Textures

- Stroke generated by moving along straight path
- Stroke perturbed by
 - Waviness function (straightness)
 - Pressure function (thickness)
- Collected in stroke textures
 - Tone dependent
 - Resolution dependent
 - Orientation dependent
- How automatic are stroke textures?
Stroke Texture Examples

Winkenbach and Salesin 1994

Stroke Texture Operations

Scaling

Changing Viewing Direction (Anisotropic)

Indication

- Selective addition of detail
- Difficult to automate
- User places detail segments interactively

Indication Example

Input without detail

With indication

Without indication

Outlines

- Boundary or interior outlines
- Accented outlines for shadowing and relief
- Dependence on viewing direction
- Suggest shadow direction

Rendering Parametric Surfaces

- Stroke orientation and density
 - Place strokes along isoparametric lines
 - Choose density for desired tone
 - tone = width / spacing
Parametric Surface Example
Winkenbach and Salesin 1996

Hatching + standard rendering
- Constant-density hatching
- Longer smoother strokes for glass
- Varying reflection coefficient
- Smooth shading with single light
- Environment mapping

Standard rendering techniques are still important!

Orientable Textures
- Inputs
 - Grayscale image to specify desired tone
 - Direction field
 - Stroke character
- Output
 - Stroke shaded image

Salisbury et al. 1997

Outline
- Pen-and-Ink Illustrations
- Painterly Rendering
- Cartoon Shading
- Technical Illustrations

Painterly Rendering
- Physical simulation
 - User applies brushstrokes
 - Computer simulates media (paper + ink)
- Automatic painting
 - User provides input image or 3D model
 - User specifies painting parameters
 - Computer generates all strokes
Physical Simulation Example

Curtis et al. 1997, Computer Generated Watercolor

Computer-Generated Watercolor

- Complex physical phenomena for artistic effect
- Build simple approximations
- Paper generation as random height field
- Simulated effects

Fluid Dynamic Simulation

- Use water velocity, viscosity, drag, pressure, pigment concentration, paper gradient
- Paper saturation and capacity
- Discretize and use cellular automata

Interactive Painting

User input

Simulation in progress

Finished painting

Automatic Painting Example

Hertzmann 1997

Automatic Painting from Images

- Start from color image: no 3D information
- Paint in resolution-based layers
 - Blur to current resolution
 - Select brush based on current resolution
 - Find area of largest error compared to real image
 - Place stroke
 - Increase resolution and repeat
- Layers are painted coarse-to-fine
- Styles controled by parameters
Layered Painting

Adding detail with smaller strokes

Painting Styles

• Style determined by parameters
 – Approximation thresholds
 – Brush sizes
 – Curvature filter
 – Blur factor
 – Minimum and maximum stroke lengths
 – Opacity
 – Grid size
 – Color jitter
• Encapsulate parameter settings as style

Style Examples

Some Styles

• “Impressionist”
 – No random color, 4 ≤ stroke length ≤ 16
 – Brush sizes 8, 4, 2; approximation threshold 100
• “Expressionist”
 – Random factor 0.5, 10 ≤ stroke length ≤ 16
 – Brush sizes 8, 4, 2; approximation threshold 50
• “Pointilist”
 – Random factor ~0.75, 0 ≤ stroke length ≤ 0
 – Brush sizes 4, 2; approximation threshold 100
• Not completely convincing to artists (yet?)

Outline

• Pen-and-Ink Illustrations
• Painterly Rendering
• Cartoon Shading
• Technical Illustrations

Cartoon Shading

• Shading model in 2D cartoon
 – Use material color and shadow color
 – Present lighting cues, shape, and context
• Stylistic
• Used in many animated movies
• Real-time techniques for games
Cartoon Shading as Texture Map

- Apply shading as 1D texture map
- Two-pass technique:
 - Pass 1: standard shader
 - Pass 2: use result from 1 as texture coordinates

Shading Variations

- Gouraud
- Flat shading
- 1 texel
- 2 texels
- 8 texels
- Shadow + highlight

Outline

- Pen-and-Ink Illustrations
- Painterly Rendering
- Cartoon Shading
- Technical Illustrations

Technical Illustrations

- Level of abstraction
 - Accent important 3D properties
 - Diminish or eliminate extraneous details
- Do not represent reality

Conventions in Technical Illustrations

- Black edge lines
- Cool to warm shading colors
- Single light source; shadows rarely used

Technical Illustration Example

- Phong shading
- Metal shading (anisotropic)
- Gouraud shading (cool to warm shift gives better depth perception)

Source: Bruce Gooch
The Future

• Smart graphics
 – Design from the user’s perspective
 – HCI, AI, Perception
• Artistic graphics
 – More tools for the creative artist
 – New styles and ideas

Summary

• Beyond photorealism
 – Artistic appeal
 – Technical explanation and illustration
 – Scientific visualization
• Use all traditional computer graphics tools
• Employ them in novel ways
• Have fun!