Rasterization

Scan Conversion
Antialiasing
[Ch 7.8-7.11, 8.9-8.12]
Rasterization (scan conversion)

- Final step in pipeline: rasterization
- From screen coordinates (float) to pixels (int)
- Writing pixels into frame buffer
- Separate buffers:
 - depth (z-buffer),
 - display (frame buffer),
 - shadows (stencil buffer),
 - blending (accumulation buffer)
Rasterizing a line
Digital Differential Analyzer (DDA)

- Represent line as

\[y = mx + h \quad \text{where} \quad m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x} \]

- Then, if \(\Delta x = 1 \) pixel, we have \(\Delta y = m \Delta x = m \)
Digital Differential Analyzer

• Assume `write_pixel(int x, int y, int value)`

  ```
  for (i = x1; i <= x2; i++)
  {
      y += m;
      write_pixel(i, round(y), color);
  }
  ```

• Problems:
 – Requires floating point addition
 – Missing pixels with steep slopes: slope restriction needed
Digital Differential Analyzer (DDA)

- Assume $0 \leq m \leq 1$
- Exploit symmetry
- Distinguish special cases

But still requires floating point additions!
Bresenham’s Algorithm I

- Eliminate floating point addition from DDA
- Assume again $0 \leq m \leq 1$
- Assume pixel centers halfway between integers
Bresenham’s Algorithm II

• Decision variable $a - b$
 – If $a - b > 0$ choose lower pixel
 – If $a - b \leq 0$ choose higher pixel

• Goal: avoid explicit computation of $a - b$

• Step 1: re-scale $d = (x_2 - x_1)(a - b) = \Delta x(a - b)$

• d is always integer
Bresenham’s Algorithm III

• Compute d at step $k+1$ from d at step k!
• Case: j did not change ($d_k > 0$)
 – a decreases by m, b increases by m
 – $(a - b)$ decreases by $2m = 2(\Delta y/\Delta x)$
 – $\Delta x(a-b)$ decreases by $2\Delta y$
Bresenham’s Algorithm IV

- Case: j did change ($d_k \leq 0$)
 - a decreases by $m-1$, b increases by $m-1$
 - $(a - b)$ decreases by $2m - 2 = 2(\Delta y/\Delta x - 1)$
 - $\Delta x(a-b)$ decreases by $2(\Delta y - \Delta x)$
Bresenham’s Algorithm V

• So \(d_{k+1} = d_k - 2\Delta y \) if \(d_k > 0 \)
• And \(d_{k+1} = d_k - 2(\Delta y - \Delta x) \) if \(d_k \leq 0 \)
• Final (efficient) implementation:

```c
void draw_line(int x1, int y1, int x2, int y2) {
    int x, y = y0;
    int dx = 2*(x2-x1), dy = 2*(y2-y1);
    int dydx = dy-dx, D = (dy-dx)/2;

    for (x = x1 ; x <= x2 ; x++) {
        write_pixel(x, y, color);
        if (D > 0) D -= dy;
        else {y++; D -= dydx;}
    }
}
```
Bresenham’s Algorithm VI

• Need different cases to handle $m > 1$
• Highly efficient
• Easy to implement in hardware and software
• Widely used
Outline

• Scan Conversion for Lines
• Scan Conversion for Polygons
• Antialiasing
Scan Conversion of Polygons

• Multiple tasks:
 – **Filling polygon** (inside/outside)
 – **Pixel shading** (color interpolation)
 – **Blending** (accumulation, not just writing)
 – **Depth values** (z-buffer hidden-surface removal)
 – **Texture coordinate interpolation** (texture mapping)

• Hardware efficiency is critical
• Many algorithms for filling (inside/outside)
• Much fewer that handle all tasks well
Filling Convex Polygons

- Find top and bottom vertices
- List edges along left and right sides
- For each scan line from bottom to top
 - Find left and right endpoints of span, x_l and x_r
 - Fill pixels between x_l and x_r
 - Can use Bresenham’s alg. to update x_l and x_r
Concave Polygons: Odd-Even Test

- **Approach 1: odd-even test**
- **For each scan line**
 - Find all scan line/polygon intersections
 - Sort them left to right
 - Fill the interior spans between intersections
- **Parity rule: inside after an odd number of crossings**
Edge vs Scan Line Intersections

- Brute force: calculate intersections explicitly
- Incremental method (Bresenham’s algorithm)
- Caching intersection information
 - Edge table with edges sorted by y_{min}
 - Active edges, sorted by x-intersection, left to right
- Process image from smallest y_{min} up
Concave Polygons: Tessellation

- Approach 2: divide non-convex, non-flat, or non-simple polygons into triangles
- OpenGL specification
 - Need accept only simple, flat, convex polygons
 - Tessellate explicitly with tessellator objects
 - Implicitly if you are lucky
- Most modern GPUs scan-convert only triangles
Flood Fill

- Draw outline of polygon
- Pick color seed
- Color surrounding pixels and recurse
- Must be able to test boundary and duplication
- More appropriate for drawing than rendering
Outline

• Scan Conversion for Lines
• Scan Conversion for Polygons
• Antialiasing
Aliasing

- Artifacts created during scan conversion
- Inevitable (going from continuous to discrete)
- Aliasing (name from digital signal processing): we sample a continues image at grid points
- Effect
 - Jagged edges
 - Moire patterns

Moire pattern from sandlotscience.com
More Aliasing

No antialiasing
Antialiasing for Line Segments

• Use area averaging at boundary

(a) (b) (c) (d)

• (c) is aliased, magnified
• (d) is antialiased, magnified
• Warning: these images are sampled on screen!
Antialiasing by Supersampling

- Mostly for off-line rendering (e.g., ray tracing)
- Render, say, 3x3 grid of mini-pixels
- Average results using a filter
- Can be done adaptively
 - Stop if colors are similar
 - Subdivide at discontinuities
Supersampling Example

- Other improvements
 - Stochastic sampling (avoiding repetition)
 - Jittering (perturb a regular grid)
Temporal Aliasing

- Sampling rate is frame rate (30 Hz for video)
- Example: spokes of wagon wheel in movie
- Possible to supersample and average
- Fast-moving objects are blurred
- Happens automatically with real hardware (photo and video cameras)
 - Exposure time (shutter speed)
 - Memory persistence (video camera)
 - Effect is motion blur
Wagon Wheel Effect

Source: YouTube
Motion Blur Example

Achieve by stochastic sampling in time

T. Porter, Pixar, 1984
16 samples / pixel / timestep
Summary

• Scan Conversion for Polygons
 – Basic scan line algorithm
 – Convex vs concave
 – Odd-even rules, tessellation

• Antialiasing (spatial and temporal)
 – Area averaging
 – Supersampling
 – Stochastic sampling