Rasterization (scan conversion)

- Final step in pipeline: rasterization
- From screen coordinates (float) to pixels (int)
- Writing pixels into frame buffer
- Separate buffers:
 - depth (z-buffer),
 - display (frame buffer),
 - shadows (stencil buffer),
 - blending (accumulation buffer)

Rasterization

Scan Conversion
Antialiasing
(Ch 7.8-7.11, 8.9-8.12)

February 28, 2011
Jernej Barbić
University of Southern California
http://www-bcf.usc.edu/~jbarbic/cs480-s11/

Rasterizing a line

Digital Differential Analyzer (DDA)

- Represent line as
 \[y = mx + h \]
 where \[m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x} \]
- Then, if \(\Delta x = 1 \) pixel, we have \(\Delta y = m \Delta x = m \)

Digital Differential Analyzer

- Assume \text{write}_\text{pixel} \(\text{int} \ x, \text{int} \ y, \text{int} \ \text{value} \)
 for \(i = x_1; i \leq x_2; i++ \) \{
 \text{y} += m;
 \text{write}_\text{pixel}(i, \text{round}(y), \text{color});
 \}
- Problems:
 - Requires floating point addition
 - Missing pixels with steep slopes: slope restriction needed

Digital Differential Analyzer (DDA)

- Assume \(0 \leq m \leq 1 \)
- Exploit symmetry
- Distinguish special cases

But still requires floating point additions!
Bresenham’s Algorithm I
- Eliminate floating point addition from DDA
- Assume again $0 \leq m \leq 1$
- Assume pixel centers halfway between integers

Bresenham’s Algorithm II
- Decision variable $a - b$
 - If $a - b > 0$ choose lower pixel
 - If $a - b \leq 0$ choose higher pixel
- Goal: avoid explicit computation of $a - b$
- Step 1: re-scale $d = (x_2 - x_1)(a - b) = \Delta x(a - b)$
 - d is always integer

Bresenham’s Algorithm III
- Compute d at step $k + 1$ from d at step k!
- Case: j did not change ($d_k > 0$)
 - a decreases by m, b increases by m
 - $(a - b)$ decreases by $2m = 2(\Delta y/\Delta x)$
 - $\Delta x(a-b)$ decreases by $2\Delta y$

Bresenham’s Algorithm IV
- Case: j did change ($d_k \leq 0$)
 - a decreases by $m-1$, b increases by $m-1$
 - $(a - b)$ decreases by $2m - 2 = 2(\Delta y/\Delta x - 1)$
 - $\Delta x(a-b)$ decreases by $2(\Delta y - \Delta x)$

Bresenham’s Algorithm V
- So $d_{k+1} = d_k - 2\Delta y$ if $d_k > 0$
- And $d_{k+1} = d_k - 2(\Delta y - \Delta x)$ if $d_k \leq 0$
- Final (efficient) implementation:
  ```c
  void draw_line(int x1, int y1, int x2, int y2) {
    int x, y = y0;
    int dx = 2*(x2-x1), dy = 2*(y2-y1);
    int dydx = dy-dx, D = (dy-dx)/2;
    for (x = x1; x <= x2; x++) {
      write_pixel(x, y, color);
      if (D > 0) D -= dy;
      else y++, D += dydx;
    }
  }
  ```

Bresenham’s Algorithm VI
- Need different cases to handle $m > 1$
- Highly efficient
- Easy to implement in hardware and software
- Widely used
Outline

• Scan Conversion for Lines
• Scan Conversion for Polygons
• Antialiasing

Scan Conversion of Polygons

• Multiple tasks:
 – Filling polygon (inside/outside)
 – Pixel shading (color interpolation)
 – Blending (accumulation, not just writing)
 – Depth values (z-buffer hidden-surface removal)
 – Texture coordinate interpolation (texture mapping)
• Hardware efficiency is critical
• Many algorithms for filling (inside/outside)
• Much fewer that handle all tasks well

Filling Convex Polygons

• Find top and bottom vertices
• List edges along left and right sides
• For each scan line from bottom to top
 – Find left and right endpoints of span, xl and xr
 – Fill pixels between xl and xr
 – Can use Bresenham’s alg. to update xl and xr

Concave Polygons: Odd-Even Test

• Approach 1: odd-even test
• For each scan line
 – Find all scan line/polygon intersections
 – Sort them left to right
 – Fill the interior spans between intersections
• Parity rule: inside after an odd number of crossings

Edge vs Scan Line Intersections

• Brute force: calculate intersections explicitly
• Incremental method (Bresenham’s algorithm)
• Caching intersection information
 – Edge table with edges sorted by y_{min}
 – Active edges, sorted by x-intersection, left to right
• Process image from smallest y_{min} up

Concave Polygons: Tessellation

• Approach 2: divide non-convex, non-flat, or non-simple polygons into triangles
• OpenGL specification
 – Need accept only simple, flat, convex polygons
 – Tessellate explicitly with tessellator objects
 – Implicitly if you are lucky
• Most modern GPUs scan-convert only triangles
Flood Fill
- Draw outline of polygon
- Pick color seed
- Color surrounding pixels and recurse
- Must be able to test boundary and duplication
- More appropriate for drawing than rendering

Outline
- Scan Conversion for Lines
- Scan Conversion for Polygons
- Antialiasing

Aliasing
- Artifacts created during scan conversion
- Inevitable (going from continuous to discrete)
- Antialiasing (name from digital signal processing): we sample a continuous image at grid points
- Effect
 - Jagged edges
 - Moire patterns

More Aliasing
- Moire pattern from sandotscience.com

Antialiasing for Line Segments
- Use area averaging at boundary

- (c) is aliased, magnified
- (d) is antialiased, magnified
- Warning: these images are sampled on screen!

Antialiasing by Supersampling
- Mostly for off-line rendering (e.g., ray tracing)
- Render, say, 3x3 grid of mini-pixels
- Average results using a filter
- Can be done adaptively
 - Stop if colors are similar
 - Subdivide at discontinuities
- one pixel
Supersampling Example

- Other improvements
 - Stochastic sampling (avoiding repetition)
 - Jittering (perturb a regular grid)

Temporal Aliasing

- Sampling rate is frame rate (30 Hz for video)
- Example: spokes of wagon wheel in movie
- Possible to supersample and average
- Fast-moving objects are blurred
- Happens automatically with real hardware (photo and video cameras)
 - Exposure time (shutter speed)
 - Memory persistence (video camera)
 - Effect is motion blur

Wagon Wheel Effect

Source: YouTube

Motion Blur Example

Achieve by stochastic sampling in time

T. Porter, Pixar, 1984
16 samples / pixel / timestep

Summary

- Scan Conversion for Polygons
 - Basic scan line algorithm
 - Convex vs concave
 - Odd-even rules, tessellation
- Antialiasing (spatial and temporal)
 - Area averaging
 - Supersampling
 - Stochastic sampling