CSCI 480 Computer Graphics
Lecture 12

Clipping

Line Clipping
Polygon Clipping
Clipping in Three Dimensions
[Angel Ch. 7.1-7.7]

February 23, 2011
Jernej Barbic
University of Southern California

http://www-bcf.usc.edu/~jbarbic/cs480-s11/
The Graphics Pipeline, Revisited

- Must eliminate objects that are outside of viewing frustum
- **Clipping**: object space (eye coordinates)
- **Scissoring**: image space (pixels in frame buffer)
 - most often less efficient than clipping
- We will first discuss **2D clipping** (for simplicity)
 - OpenGL uses 3D clipping
Clipping Against a Frustum

- General case of frustum (truncated pyramid)

- Clipping is tricky because of frustum shape
Perspective Normalization

- Solution:
 - Implement perspective projection by perspective normalization and orthographic projection
 - Perspective normalization is a homogeneous tfm.

See [Angel Ch. 5.9]
The Normalized Frustum

- OpenGL uses \(-1 \leq x, y, z \leq 1\) (others possible)
- Clip against resulting cube
- Clipping against arbitrary (programmer-specified) planes requires more general algorithms and is more expensive
The Viewport Transformation

• Transformation sequence again:
 1. **Camera**: From object coordinates to eye coords
 2. **Perspective normalization**: to clip coordinates
 3. **Clipping**
 4. **Perspective division**: to normalized device coords.
 5. **Orthographic projection** (setting $z_p = 0$)
 6. **Viewport transformation**: to screen coordinates

• Viewport transformation can distort
 – Solution: pass the correct window aspect ratio to `gluPerspective`
Clipping

• General: 3D object against cube

• Simpler case:
 – In 2D: line against square or rectangle
 – Clipping is performed before scan conversion
 – Later: polygon clipping
Clipping Against Rectangle in 2D

- **Line-segment clipping**: modify endpoints of lines to lie within clipping rectangle
Clipping Against Rectangle in 2D

• The result (in red)
Clipping Against Rectangle in 2D

• Could calculate intersections of line segments with clipping rectangle
 – expensive, due to floating point multiplications and divisions
• Want to minimize the number of multiplications and divisions

\[y = kx + n \]

\[x = x_0 \]

\[x = x_1 \]

\[y = y_0 \]

\[y = y_1 \]
Several practical algorithms for clipping

- Main motivation:

 Avoid expensive line-rectangle intersections (which require floating point divisions)

- Cohen-Sutherland Clipping
- Liang-Barsky Clipping
- There are many more (but many only work in 2D)
Cohen-Sutherland Clipping

- Clipping rectangle is an intersection of 4 half-planes

\[
\text{interior} = \bigcap \begin{cases}
 x > x_{\text{min}} \\
 x < x_{\text{max}} \\
 y < y_{\text{max}} \\
 y > y_{\text{min}}
\end{cases}
\]

- Encode results of four half-plane tests
- Generalizes to 3 dimensions (6 half-planes)
Outcodes (Cohen-Sutherland)

- Divide space into 9 regions
- 4-bit **outcode** determined by comparisons

<table>
<thead>
<tr>
<th>1001</th>
<th>1000</th>
<th>1010</th>
</tr>
</thead>
<tbody>
<tr>
<td>ymax</td>
<td>0000</td>
<td>0010</td>
</tr>
<tr>
<td>0001</td>
<td>(x₁, y₁)</td>
<td>(x₂, y₂)</td>
</tr>
<tr>
<td>ymin</td>
<td>0100</td>
<td>0110</td>
</tr>
<tr>
<td>0101</td>
<td>xmin</td>
<td>xmax</td>
</tr>
</tbody>
</table>

- \(b₀ : y > y_{\text{max}} \)
- \(b₁ : y < y_{\text{min}} \)
- \(b₂ : x > x_{\text{max}} \)
- \(b₃ : x < x_{\text{min}} \)

\[o₁ = \text{outcode}(x₁, y₁) \]
\[o₂ = \text{outcode}(x₂, y₂) \]
Cases for Outcodes

- Outcomes: accept, reject, subdivide

\[o_1 = o_2 = 0000: \text{accept entire segment} \]

\[o_1 \& o_2 \neq 0000: \text{reject entire segment} \]

\[o_1 = 0000, o_2 \neq 0000: \text{subdivide} \]

\[o_1 \neq 0000, o_2 = 0000: \text{subdivide} \]

\[o_1 \& o_2 = 0000: \text{subdivide} \]
Cohen-Sutherland Subdivision

- Pick outside endpoint \((o \neq 0000)\)
- Pick a crossed edge \((o = b_0b_1b_2b_3\) and \(b_k \neq 0)\)
- Compute intersection of this line and this edge
- Replace endpoint with intersection point
- Restart with new line segment
 - Outcodes of second point are unchanged
- This algorithms converges
Liang-Barsky Clipping

• Start with parametric form for a line

\[
p(\alpha) = (1 - \alpha)p_1 + \alpha p_2, \quad 0 \leq \alpha \leq 1
\]
\[
x(\alpha) = (1 - \alpha)x_1 + \alpha x_2
\]
\[
y(\alpha) = (1 - \alpha)y_1 + \alpha y_2
\]
Liang-Barsky Clipping

- Compute all four intersections $1, 2, 3, 4$ with extended clipping rectangle
- Often, no need to compute all four intersections
Ordering of intersection points

- Order the intersection points
- Figure (a): $1 > \alpha_4 > \alpha_3 > \alpha_2 > \alpha_1 > 0$
- Figure (b): $1 > \alpha_4 > \alpha_2 > \alpha_3 > \alpha_1 > 0$
• It is possible to clip already if one knows the order of the four intersection points!
• Even if the actual intersections were not computed!
• Can enumerate all ordering cases
Liang-Barsky efficiency improvements

• Efficiency improvement 1:
 – Compute intersections one by one
 – Often can reject before all four are computed

• Efficiency improvement 2:
 – Equations for α_3, α_2

$$
y_{\text{max}} = (1 - \alpha_3)y_1 + \alpha_3y_2
$$
$$
x_{\text{min}} = (1 - \alpha_2)x_1 + \alpha_2x_2
$$
$$
\alpha_3 = \frac{y_{\text{max}} - y_1}{y_2 - y_1} \quad \alpha_2 = \frac{x_{\text{min}} - x_1}{x_2 - x_1}
$$

– Compare α_3, α_2 without floating-point division
Line-Segment Clipping Assessment

• Cohen-Sutherland
 – Works well if many lines can be rejected early
 – Recursive structure (multiple subdivisions) is a drawback
• Liang-Barsky
 – Avoids recursive calls
 – Many cases to consider (tedious, but not expensive)
Outline

• Line-Segment Clipping
 – Cohen-Sutherland
 – Liang-Barsky

• Polygon Clipping
 – Sutherland-Hodgeman

• Clipping in Three Dimensions
Polygon Clipping

- Convert a polygon into **one ore more** polygons
- Their union is intersection with clip window
- Alternatively, we can first tesselate concave polygons (OpenGL supported)
Concave Polygons

• Approach 1: clip, and then join pieces to a single polygon
 – often difficult to manage

• Approach 2: tesselate and clip triangles
 – this is the common solution
Sutherland-Hodgeman (part 1)

- **Subproblem:**
 - Input: polygon (vertex list) and single clip plane
 - Output: new (clipped) polygon (vertex list)

- **Apply once for each clip plane**
 - 4 in two dimensions
 - 6 in three dimensions
 - Can arrange in pipeline
Sutherland-Hodgeman (part 2)

• To clip vertex list (polygon) against a half-plane:
 – Test first vertex. Output if inside, otherwise skip.
 – Then loop through list, testing transitions
 • In-to-in: output vertex
 • In-to-out: output intersection
 • out-to-in: output intersection and vertex
 • out-to-out: no output
 – Will output clipped polygon as vertex list

• May need some cleanup in concave case
• Can combine with Liang-Barsky idea
Other Cases and Optimizations

• Curves and surfaces
 – Do it analytically if possible
 – Otherwise, approximate curves / surfaces by lines and polygons

• Bounding boxes
 – Easy to calculate and maintain
 – Sometimes big savings

(a) (b)
Outline

• Line-Segment Clipping
 – Cohen-Sutherland
 – Liang-Barsky

• Polygon Clipping
 – Sutherland-Hodgeman

• Clipping in Three Dimensions
Clipping Against Cube

- Derived from earlier algorithms
- Can allow right parallelepiped
Cohen-Sutherland in 3D

- Use 6 bits in outcode
 - b_4: $z > z_{\text{max}}$
 - b_5: $z < z_{\text{min}}$
- Other calculations as before
Liang-Barsky in 3D

• Add equation \(z(\alpha) = (1- \alpha) z_1 + \alpha z_2 \)
• Solve, for \(p_0 \) in plane and normal \(n \):

\[
\begin{align*}
p(\alpha) &= (1 - \alpha)p_1 + \alpha p_2 \\
n \cdot (p(\alpha) - p_0) &= 0
\end{align*}
\]

• Yields

\[
\alpha = \frac{n \cdot (p_0 - p_1)}{n \cdot (p_2 - p_1)}
\]

• Optimizations as for Liang-Barsky in 2D
Summary: Clipping

• Clipping line segments to rectangle or cube
 – Avoid expensive multiplications and divisions
 – Cohen-Sutherland or Liang-Barsky

• Polygon clipping
 – Sutherland-Hodgeman pipeline

• Clipping in 3D
 – essentially extensions of 2D algorithms
Preview and Announcements

• Scan conversion
• Anti-aliasing
• Other pixel-level operations
• Assignment 2 due a week from today!
• Assignment 1 video