The Graphics Pipeline, Revisited

- Must eliminate objects that are outside of viewing frustum
- Clipping: object space (eye coordinates)
- Scissoring: image space (pixels in frame buffer)
 - most often less efficient than clipping
- We will first discuss 2D clipping (for simplicity)
 - OpenGL uses 3D clipping

Clipping Against a Frustum

- General case of frustum (truncated pyramid)
- Clipping is tricky because of frustum shape

Perspective Normalization

- Solution:
 - Implement perspective projection by perspective normalization and orthographic projection
 - Perspective normalization is a homogeneous tfm.

The Normalized Frustum

- OpenGL uses \(-1 \leq x,y,z \leq 1\) (others possible)
- Clip against resulting cube
- Clipping against arbitrary (programmer-specified) planes requires more general algorithms and is more expensive

The Viewport Transformation

- Transformation sequence again:
 1. Camera: From object coordinates to eye coords
 2. Perspective normalization: to clip coordinates
 3. Clipping
 4. Perspective division: to normalized device coords.
 5. Orthographic projection (setting \(z_p = 0\))
 6. Viewport transformation: to screen coordinates
- Viewport transformation can distort
 - Solution: pass the correct window aspect ratio to gluPerspective
Clipping

- General: 3D object against cube

- Simpler case:
 - In 2D: line against square or rectangle
 - Clipping is performed before scan conversion
 - Later: polygon clipping

Clipping Against Rectangle in 2D

- Line-segment clipping: modify endpoints of lines to lie within clipping rectangle

Clipping Against Rectangle in 2D

- The result (in red)

Clipping Against Rectangle in 2D

- Could calculate intersections of line segments with clipping rectangle
 - expensive, due to floating point multiplications and divisions
- Want to minimize the number of multiplications and divisions

Several practical algorithms for clipping

- Main motivation:
 Avoid expensive line-rectangle intersections (which require floating point divisions)
- Cohen-Sutherland Clipping
- Liang-Barsky Clipping
- There are many more (but many only work in 2D)

Cohen-Sutherland Clipping

- Clipping rectangle is an intersection of 4 half-planes

- Encode results of four half-plane tests
- Generalizes to 3 dimensions (6 half-planes)
Outcodes (Cohen-Sutherland)
- Divide space into 9 regions
- 4-bit outcode determined by comparisons

<table>
<thead>
<tr>
<th>Outcode</th>
<th>y > ymax</th>
<th>y < ymin</th>
<th>x > xmax</th>
<th>x < xmin</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0101</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0101</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0110</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0110</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- $o_1 = \text{outcode}(x_1, y_1)$
- $o_2 = \text{outcode}(x_2, y_2)$

Cases for Outcodes
- Outcomes: accept, reject, subdivide

Cohen-Sutherland Subdivision
- Pick outside endpoint ($o \neq 0000$)
- Pick a crossed edge ($o = b_0 b_1 b_2 b_3$ and $b_k \neq 0$)
- Compute intersection of this line and this edge
- Replace endpoint with intersection point
- Restart with new line segment
 - Outcodes of second point are unchanged
- This algorithms converges

Liang-Barsky Clipping
- Start with parametric form for a line
 - $p(\alpha) = (1 - \alpha)p_1 + \alpha p_2, \quad 0 \leq \alpha \leq 1$
 - $x(\alpha) = (1 - \alpha)x_1 + \alpha x_2$
 - $y(\alpha) = (1 - \alpha)y_1 + \alpha y_2$

Ordering of intersection points
- Order the intersection points
 - Figure (a): $1 > \alpha_4 > \alpha_3 > \alpha_2 > \alpha_1 > 0$
 - Figure (b): $1 > \alpha_4 > \alpha_2 > \alpha_3 > \alpha_1 > 0$
Liang-Barsky Idea

- It is possible to clip already if one knows the order of the four intersection points!
- Even if the actual intersections were not computed!
- Can enumerate all ordering cases

Liang-Barsky efficiency improvements

- Efficiency improvement 1:
 - Compute intersections one by one
 - Often can reject before all four are computed
- Efficiency improvement 2:
 - Equations for α_3, α_2
 \[
 \begin{align*}
 \alpha_3 &= \frac{y_{\text{max}} - y_1}{y_2 - y_1} \quad \alpha_2 &= \frac{x_{\text{min}} - x_1}{x_2 - x_1}
 \end{align*}
 \]
 - Compare α_3, α_2 without floating-point division

Line-Segment Clipping Assessment

- Cohen-Sutherland
 - Works well if many lines can be rejected early
 - Recursive structure (multiple subdivisions) is a drawback
- Liang-Barsky
 - Avoids recursive calls
 - Many cases to consider (tedious, but not expensive)

Outline

- Line-Segment Clipping
 - Cohen-Sutherland
 - Liang-Barsky
- Polygon Clipping
 - Sutherland-Hodgeman
- Clipping in Three Dimensions

Polygon Clipping

- Convert a polygon into one or more polygons
- Their union is intersection with clip window
- Alternatively, we can first tesselate concave polygons (OpenGL supported)

Concave Polygons

- Approach 1: clip, and then join pieces to a single polygon
 - often difficult to manage
- Approach 2: tesselate and clip triangles
 - this is the common solution
Sutherland-Hodgeman (part 1)

- **Subproblem:**
 - Input: polygon (vertex list) and single clip plane
 - Output: new (clipped) polygon (vertex list)
- **Apply once for each clip plane**
 - 4 in two dimensions
 - 6 in three dimensions
 - Can arrange in pipeline

Sutherland-Hodgeman (part 2)

- **To clip vertex list (polygon) against a half-plane:**
 - Test first vertex. Output if inside, otherwise skip.
 - Then loop through list, testing transitions
 - In-to-in: output vertex
 - In-to-out: output intersection
 - out-to-in: output intersection and vertex
 - out-to-out: no output
 - Will output clipped polygon as vertex list
 - May need some cleanup in concave case
 - Can combine with Liang-Barsky idea

Other Cases and Optimizations

- **Curves and surfaces**
 - Do it analytically if possible
 - Otherwise, approximate curves / surfaces by lines and polygons
- **Bounding boxes**
 - Easy to calculate and maintain
 - Sometimes big savings

Outline

- **Line-Segment Clipping**
 - Cohen-Sutherland
 - Liang-Barsky
- **Polygon Clipping**
 - Sutherland-Hodgeman
 - Clipping in Three Dimensions

Clipping Against Cube

- Derived from earlier algorithms
- Can allow right parallelepiped

Cohen-Sutherland in 3D

- Use 6 bits in outcode
 - \(b_4: z > z_{\text{max}} \)
 - \(b_5: z < z_{\text{min}} \)
- Other calculations as before
Liang-Barsky in 3D

- Add equation $z(\alpha) = (1 - \alpha) z_1 + \alpha z_2$
- Solve, for p_0 in plane and normal n:

 $$p(\alpha) = (1 - \alpha)p_1 + \alpha p_2$$

 $$n \cdot (p(\alpha) - p_0) = 0$$

- Yields

 $$\alpha = \frac{n \cdot (p_0 - p_1)}{n \cdot (p_2 - p_1)}$$

- Optimizations as for Liang-Barsky in 2D

Summary: Clipping

- Clipping line segments to rectangle or cube
 - Avoid expensive multiplications and divisions
 - Cohen-Sutherland or Liang-Barsky

- Polygon clipping
 - Sutherland-Hodgeman pipeline

- Clipping in 3D
 - Essentially extensions of 2D algorithms

Preview and Announcements

- Scan conversion
- Anti-aliasing
- Other pixel-level operations
- Assignment 2 due a week from today!
- Assignment 1 video