Splines

February 7, 2011
Jernej Barbic
University of Southern California

http://www-bcf.usc.edu/~jbarbic/cs480-s11/
Roller coaster

- Next programming assignment involves creating a 3D roller coaster animation

- We must model the 3D curve describing the roller coaster, but how?
Modeling Complex Shapes

• We want to build models of very complicated objects

• Complexity is achieved using simple pieces
 – polygons,
 – parametric curves and surfaces, or
 – implicit curves and surfaces

• This lecture: parametric curves
What Do We Need From Curves in Computer Graphics?

- Local control of shape (so that easy to build and modify)
- Stability
- Smoothness and continuity
- Ability to evaluate derivatives
- Ease of rendering
Curve Representations

• Explicit: \(y = f(x) \)
 - Must be a function (single-valued)
 - Big limitation—vertical lines?

• Parametric: \((x,y) = (f(u),g(u))\)
 - Easy to specify, modify, control
 - Extra “hidden” variable \(u\), the parameter
 \((x, y) = (\cos u, \sin u)\)

• Implicit: \(f(x,y) = 0 \)
 - \(y\) can be a multiple valued function of \(x\)
 - Hard to specify, modify, control
 \[x^2 + y^2 - r^2 = 0 \]
Parameterization of a Curve

- *Parameterization* of a curve: how a change in u moves you along a given curve in xyz space.

- There are an infinite number of parameterizations of a given curve. Slow, fast, speed continuous or discontinuous, clockwise (CW) or CCW...
Polynomial Interpolation

• An \(n \)-th degree polynomial fits a curve to \(n+1 \) points
 – called Lagrange Interpolation
 – result is a curve that is too wiggly, change to any control point affects entire curve (non-local)
 – *this method is poor*

• We usually want the curve to be as smooth as possible
 – minimize the wiggles
 – high-degree polynomials are bad

Lagrange interpolation, degree=15

Splines: Piecewise Polynomials

- A spline is a *piecewise polynomial*: many low degree polynomials are used to interpolate (pass through) the control points
- *Cubic piecewise* polynomials are the most common:
 - piecewise definition gives local control
 - they are the lowest order polynomials that
 1. interpolate two points and
 2. allow the gradient at each point to be defined

 (\(C^1\) continuity is possible)
 - Higher or lower degrees are possible, of course
Piecewise Polynomials

- Spline: lots of little polynomials pieced together
- Want to make sure they fit together nicely

\[C_0 \text{ continuity} \quad C_0 \ & C_1 \text{ continuity} \quad C_0 \ & C_1 \ & C_2 \text{ continuity} \]

- Continuous in position
- Continuous in position and tangent vector
- Continuous in position, tangent, and curvature
Splines

- Types of splines:
 - Hermite Splines
 - Bezier Splines
 - Catmull-Rom Splines
 - Natural Cubic Splines
 - B-Splines
 - NURBS

- Splines can be used to model both curves and surfaces
Cubic Curves in 3D

• Cubic polynomial:
 \[p(u) = au^3 + bu^2 + cu + d = [u^3 \ u^2 \ u \ 1] \begin{bmatrix} a & b & c & d \end{bmatrix}^T \]

• Three cubic polynomials, one for each coordinate:
 \[x(u) = a_x u^3 + b_x u^2 + c_x u + d_x \]
 \[y(u) = a_y u^3 + b_y u^2 + c_y u + d_y \]
 \[z(u) = a_z u^3 + b_z u^2 + c_z u + d_z \]

• In matrix notation:
 \[
 \begin{bmatrix}
 x(u) \\
 y(u) \\
 z(u)
 \end{bmatrix}
 =
 \begin{bmatrix}
 u^3 & u^2 & u & 1
 \end{bmatrix}
 \begin{bmatrix}
 a_x & a_y & a_z \\
 b_x & b_y & b_z \\
 c_x & c_y & c_z \\
 d_x & d_y & d_z
 \end{bmatrix}
 \]

• Or simply:
 \[p = [u^3 \ u^2 \ u \ 1] A \]
Cubic Hermite Splines

We want a way to specify the end points and the slope at the end points!
Deriving Hermite Splines

- Four constraints: value and slope (or in 3-D, position and tangent vector) at beginning and end of interval \([0,1]\):

 \[
 p(0) = p_1 = (x_1, y_1, z_1) \\
 p(1) = p_2 = (x_2, y_2, z_2) \\
 p'(0) = p_1' = (x_1', y_1', z_1') \\
 p'(1) = p_2' = (x_2', y_2', z_2')
 \]

- Assume cubic form: \(p(u) = au^3 + bu^2 + cu + d\)

- Four unknowns: \(a, b, c, d\)
Deriving Hermite Splines

• Assume cubic form: \(p(u) = au^3 + bu^2 + cu + d \)

\[
p_1 = p(0) = d
\]

\[
p_2 = p(1) = a + b + c + d
\]

\[
\overline{p}_1 = p'(0) = c
\]

\[
\overline{p}_2 = p'(1) = 3a + 2b + c
\]

• Linear system: 12 equations for 12 unknowns
• Unknowns: \(a, b, c, d \) (each of \(a, b, c, d \) is a 3-vector)
The Cubic Hermite Spline Equation

• After solving, we obtain:

\[
\begin{bmatrix}
 x \\
 y \\
 z
\end{bmatrix} =
\begin{bmatrix}
 u^3 & u^2 & u & 1
\end{bmatrix}
\begin{bmatrix}
 2 & -2 & 1 & 1 \\
 -3 & 3 & -2 & -1 \\
 0 & 0 & 1 & 0 \\
 1 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
 x_1 & y_1 & z_1 \\
 x_2 & y_2 & z_2 \\
 \bar{x}_1 & \bar{y}_1 & \bar{z}_1 \\
 \bar{x}_2 & \bar{y}_2 & \bar{z}_2
\end{bmatrix}
\]

point on the spline parameter vector basis control matrix
(what the user gets to pick)

• This form is typical for splines
 – basis matrix and meaning of control matrix change with the spline type
Every cubic Hermite spline is a linear combination (blend) of these 4 functions.
Piecing together Hermite Curves

It's easy to make a multi-segment Hermite spline:

- each segment is specified by a cubic Hermite curve
- just specify the position and tangent at each “joint” (called knot)
- the pieces fit together with matched positions and first derivatives
- gives C1 continuity
Beziers Curves

- Variant of the Hermite spline
- Instead of endpoints and tangents, four control points
 - points P1 and P4 are on the curve
 - points P2 and P3 are off the curve
 - \(p(0) = P1, p(1) = P4, \)
 - \(p'(0) = 3(P2-P1), p'(1) = 3(P4 - P3) \)
- Basis matrix is derived from the Hermite basis (or from scratch)
- Convex Hull property: curve contained within the convex hull of control points
- Scale factor “3” is chosen to make “velocity” approximately constant
The Bezier Spline Matrix

\[
\begin{bmatrix}
 x \\
 y \\
 z
\end{bmatrix} = \begin{bmatrix}
 u^3 & u^2 & u & 1
\end{bmatrix}
\begin{bmatrix}
 2 & -2 & 1 & 1 \\
 -3 & 3 & -2 & -1 \\
 0 & 0 & 1 & 0 \\
 1 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 0 & 0 & 1 \\
 -3 & 3 & 0 & 0 \\
 0 & 0 & -3 & 3
\end{bmatrix}
\begin{bmatrix}
 x_1 & y_1 & z_1 \\
 x_2 & y_2 & z_2 \\
 x_3 & y_3 & z_3 \\
 x_4 & y_4 & z_4
\end{bmatrix}
\]

Hermite basis Bezier to Hermite Bezier control matrix

\[
= \begin{bmatrix}
 u^3 & u^2 & u & 1
\end{bmatrix}
\begin{bmatrix}
 -1 & 3 & -3 & 1 \\
 3 & -6 & 3 & 0 \\
 -3 & 3 & 0 & 0 \\
 1 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
 x_1 & y_1 & z_1 \\
 x_2 & y_2 & z_2 \\
 x_3 & y_3 & z_3 \\
 x_4 & y_4 & z_4
\end{bmatrix}
\]

Bezier basis Bezier control matrix
Beziers Blending Functions

Also known as the order 4, degree 3 Bernstein polynomials
Nonnegative, sum to 1
The entire curve lies inside the polyhedron bounded by the control points

\[
p(t) = \begin{bmatrix}
(1-t)^3 \\
3t(1-t)^2 \\
3t^2(1-t) \\
t^3
\end{bmatrix}^T \begin{bmatrix}
p_1 \\
p_2 \\
p_3 \\
p_4
\end{bmatrix}
\]
It's easy to subdivide Bezier curves

Each half is a Bezier curve, therefore it is easy to draw them by subdivision
Catmull-Rom Splines

- Roller-coaster (next programming assignment)
- With Hermite splines, the designer must arrange for consecutive tangents to be collinear, to get C^1 continuity. Similar for Bezier. This gets tedious.
- Catmull-Rom: an interpolating cubic spline with built-in C^1 continuity.
- Compared to Hermite/Bezier: fewer control points required, but less freedom.

Catmull-Rom spline
Constructing the Catmull-Rom Spline

Suppose we are given n control points in 3-D: \(p_1, p_2, \ldots, p_n \).

For a CR spline, we set the tangent at \(p_i \) to \(s^*(p_{i+1} - p_{i-1}) \) for \(i=2, \ldots, n-1 \), for some \(s \) (often \(s=0.5 \))

\(s \) is tension parameter: determines the magnitude (but not direction!) of the tangent vector at point \(p_i \)

What about endpoint tangents? Use extra control points \(p_0, p_{n+1} \).

Now we have positions and tangents at each knot. This is a Hermite specification. Now, just use Hermite formulas to derive the spline.

Note: curve between \(p_i \) and \(p_{i+1} \) is completely determined by \(p_{i-1}, p_i, p_{i+1}, p_{i+2} \).
Catmull-Rom Spline Matrix

\[
\begin{bmatrix}
x & y & z \\
\end{bmatrix} =
\begin{bmatrix}
\frac{1}{3} & \frac{1}{2} & \frac{1}{6} \\
\frac{2}{3} & -1 & \frac{4}{3} \\
\frac{1}{3} & \frac{1}{2} & \frac{1}{6} \\
0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
x_1 & y_1 & z_1 \\
x_2 & y_2 & z_2 \\
x_3 & y_3 & z_3 \\
x_4 & y_4 & z_4
\end{bmatrix}
\]

- Derived in way similar to Hermite and Bezier
- Parameter \(s \) is typically set to \(s=1/2 \).
Splines with More Continuity?

• So far, only C^1 continuity.
• How could we get C^2 continuity at control points?

• Possible answers:
 – Use higher degree polynomials
 degree 4 = quartic, degree 5 = quintic, … but these get computationally expensive, and sometimes wiggly
 – Give up local control \rightarrow natural cubic splines
 A change to any control point affects the entire curve
 – Give up interpolation \rightarrow cubic B-splines
 Curve goes near, but not through, the control points
Comparison of Basic Cubic Splines

<table>
<thead>
<tr>
<th>Type</th>
<th>Local Control</th>
<th>Continuity</th>
<th>Interpolation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hermite</td>
<td>YES</td>
<td>C1</td>
<td>YES</td>
</tr>
<tr>
<td>Bezier</td>
<td>YES</td>
<td>C1</td>
<td>YES</td>
</tr>
<tr>
<td>Catmull-Rom</td>
<td>YES</td>
<td>C1</td>
<td>YES</td>
</tr>
<tr>
<td>Natural</td>
<td>NO</td>
<td>C2</td>
<td>YES</td>
</tr>
<tr>
<td>B-Splines</td>
<td>YES</td>
<td>C2</td>
<td>NO</td>
</tr>
</tbody>
</table>

Summary:

Cannot get C2, interpolation and local control with cubics
Natural Cubic Splines

• If you want 2nd derivatives at joints to match up, the resulting curves are called *natural cubic splines*

• It’s a simple computation to solve for the cubics' coefficients. (See *Numerical Recipes in C* book for code.)

• Finding all the right weights is a *global* calculation (solve tridiagonal linear system)
B-Splines

• Give up interpolation
 – the curve passes near the control points
 – best generated with interactive placement (because it’s hard to guess where the curve will go)

• Curve obeys the convex hull property

• C2 continuity and local control are good compensation for loss of interpolation
B-Spline Basis

- We always need 3 more control points than the number of spline segments

\[
M_{Bs} = \frac{1}{6} \begin{bmatrix}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 0 & 3 & 0 \\
1 & 4 & 1 & 0 \\
\end{bmatrix}
\]

\[
G_{Bs_i} = \begin{bmatrix}
P_{i-3} \\
P_{i-2} \\
P_{i-1} \\
P_i \\
\end{bmatrix}
\]
Other common types of splines

- Non-uniform Splines
- Non-Uniform Rational Cubic curves (NURBS)
- NURBS are very popular and used in many commercial packages
How to Draw Spline Curves

• Basis matrix equation allows same code to draw any spline type

• **Method 1**: brute force
 – Calculate the coefficients
 – For each cubic segment, vary u from 0 to 1 (fixed step size)
 – Plug in u value, matrix multiply to compute position on curve
 – Draw line segment from last position to current position

• What’s wrong with this approach?
 – Draws in even steps of u
 – Even steps of u does not mean even steps of x
 – Line length will vary over the curve
 – Want to bound line length
 » too long: curve looks jagged
 » too short: curve is slow to draw
Method 2: recursive subdivision - vary step size to draw short lines

Subdivide(u0, u1, maxlinelength)
 umid = (u0 + u1)/2
 x0 = F(u0)
 x1 = F(u1)
 if |x1 - x0| > maxlinelength
 Subdivide(u0, umid, maxlinelength)
 Subdivide(umid, u1, maxlinelength)
 else drawline(x0, x1)

Variant on Method 2 - subdivide based on curvature
 - replace condition in “if” statement with straightness criterion
 - draws fewer lines in flatter regions of the curve
Summary

• Piecewise cubic is generally sufficient
• Define conditions on the curves and their continuity

• Most important:
 – basic curve properties
 (what are the conditions, controls, and properties for each spline type)
 – generic matrix formula for uniform cubic splines \(p(u) = u B G \)
 – given a definition, derive a basis matrix
 (do not memorize the matrices themselves)