Roller coaster

- Next programming assignment involves creating a 3D roller coaster animation
- We must model the 3D curve describing the roller coaster, but how?

Modeling Complex Shapes

- We want to build models of very complicated objects
- Complexity is achieved using simple pieces
 - polygons,
 - parametric curves and surfaces, or
 - implicit curves and surfaces
- This lecture: parametric curves

What Do We Need From Curves in Computer Graphics?

- Local control of shape (so that easy to build and modify)
- Stability
- Smoothness and continuity
- Ability to evaluate derivatives
- Ease of rendering

Curve Representations

- Explicit: $y = f(x)$
 - Must be a function (single-valued)
 - Big limitation—vertical lines?
- Parametric: $(x,y) = (f(u),g(u))$
 - Easy to specify, modify, control
 - Extra 'hidden' variable u, the parameter
- Implicit: $f(x,y) = 0$
 - y can be a multiple valued function of x
 - Hard to specify, modify, control

Parameterization of a Curve

- Parameterization of a curve: how a change in u moves you along a given curve in xyz space.
- There are an infinite number of parameterizations of a given curve. Slow, fast, speed continuous or discontinuous, clockwise (CW) or CCW...
Polynomial Interpolation

- An n-th degree polynomial fits a curve to $n+1$ points
- called Lagrange interpolation
- result is a curve that is too wiggly, change to any control point affects entire curve (non-local)
- this method is poor

- We usually want the curve to be as smooth as possible
 - minimize the wiggles
 - high-degree polynomials are bad

Lagrange interpolation, degree=15

Splines: Piecewise Polynomials

- A spline is a piecewise polynomial: many low degree polynomials are used to interpolate (pass through) the control points

- Cubic piecewise polynomials are the most common:
 - piecewise definition gives local control
 - they are the lowest order polynomials that
 1. interpolate two points and
 2. allow the gradient at each point to be defined (C^1 continuity is possible)
 - Higher or lower degrees are possible, of course

Piecewise Polynomials

- Spline: lots of little polynomials pieced together
- Want to make sure they fit together nicely

Continuous in position
Continuous in position and tangent vector
Continuous in position, tangent, and curvature

Splines

- Types of splines:
 - Hermite Splines
 - Bezier Splines
 - Catmull-Rom Splines
 - Natural Cubic Splines
 - B-Splines
 - NURBS

- Splines can be used to model both curves and surfaces

Cubic Curves in 3D

- Cubic polynomial:
 - $p(u) = au^3 + bu^2 + cu + d = [u^3 \ u^2 \ u \ 1] [a \ b \ c \ d]^T$

- Three cubic polynomials, one for each coordinate:
 - $x(u) = a_xu^3 + b_xu^2 + c_xu + d_x$
 - $y(u) = a_yu^3 + b_yu^2 + c_yu + d_y$
 - $z(u) = a_zu^3 + b_zu^2 + c_zu + d_z$

- In matrix notation:
 - $p = [u^3 \ u^2 \ u \ 1] A$

- Or simply: $p = [u^3 \ u^2 \ u \ 1] A$

Cubic Hermite Splines

We want a way to specify the end points and the slope at the end points!
Deriving Hermite Splines

- Four constraints: value and slope (or in 3-D, position and tangent vector) at beginning and end of interval \([0,1]\):
 \[p(0) = p_1 = (x_1, y_1, z_1) \]
 \[p(1) = p_2 = (x_2, y_2, z_2) \]
 \[p'(0) = p_1' = (x_1', y_1', z_1') \]
 \[p'(1) = p_2' = (x_2', y_2', z_2') \]
- Assume cubic form: \(p(u) = au^3 + bu^2 + cu + d \)
- Four unknowns: \(a, b, c, d \)

The Cubic Hermite Spline Equation

- After solving, we obtain:
 \[
 \begin{bmatrix}
 x & y & z
 \end{bmatrix}
 =
 \begin{bmatrix}
 2 & -3 & 0 & 1 \\
 -3 & 3 & -2 & 1 \\
 0 & 1 & 0 & 0 \\
 1 & 0 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 x_1 & y_1 & z_1 \\
 x_2 & y_2 & z_2 \\
 x_1' & y_1' & z_1' \\
 x_2' & y_2' & z_2'
 \end{bmatrix}
 \]
- This form is typical for splines
 - basis matrix and meaning of control matrix change with the spline type

Piecing together Hermite Curves

It's easy to make a multi-segment Hermite spline:
- each segment is specified by a cubic Hermite curve
- just specify the position and tangent at each “joint” (called knot)
- the pieces fit together with matched positions and first derivatives
- gives C1 continuity

Beziers

- Variant of the Hermite spline
- Instead of endpoints and tangents, four control points:
 - points P1 and P4 are on the curve
 - points P2 and P3 are off the curve
 - \(p(0) = P1, p(1) = P4 \)
 - \(p(0) = 3(P2 - P1), p(1) = 3(P4 - P3) \)
- Basis matrix is derived from the Hermite basis (or from scratch)
- Convex Hull property: curve contained within the convex hull of control points
- Scale factor “3” is chosen to make “velocity” approximately constant
The Bezier Spline Matrix

The matrix

\[\begin{bmatrix} x & y & z \\ u^3 & u^2 & u \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_0 & y_0 & z_0 \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{bmatrix} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \]

is known as the Bezier control matrix. It translates the Hermite basis into the Bezier basis.

Beziers Blending Functions

The blending functions are given by

\[p(t) = \begin{bmatrix} (1-t)^3 \\ 3t(1-t)^2 \\ 3t^2(1-t) \\ t^3 \end{bmatrix} \]

These functions are also known as the order 4, degree 3 Bernstein polynomials. They are nonnegative and sum to 1. The entire curve lies inside the polyhedron bounded by the control points.

It’s easy to subdivide Bezier curves

Each half is a Bezier curve, therefore it is easy to draw them by subdivision.

Catmull-Rom Splines

- Roller-coaster (next programming assignment)
- With Hermite splines, the designer must arrange for consecutive tangents to be collinear, to get C^1 continuity. Similar for Bezier.
- This gets tedious.
- Catmull-Rom: an interpolating cubic spline with built-in C^1 continuity.
- Compared to Hermite/Bezier: fewer control points required, but less freedom.

Constructing the Catmull-Rom Spline

Suppose we are given n control points in 3-D: \(p_0, p_1, \ldots, p_n \).

For a CR spline, we set the tangent at \(p_i \) to \(s(p_{i+1} - p_{i-1}) \) for \(i=2, \ldots, n-1 \), for some \(s \) (often \(s=0.5 \)).

\(s \) is tension parameter: determines the magnitude (but not direction!) of the tangent vector at point \(p_i \).

What about endpoint tangents? Use extra control points \(p_{-1}, p_{n+1} \).

Now we have positions and tangents at each knot. This is a Hermite specification. Now, just use Hermite formulas to derive the spline.

Catmull-Rom Spline Matrix

\[\begin{bmatrix} x & y & z \\ u^3 & u^2 & u \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_0 & y_0 & z_0 \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{bmatrix} \begin{bmatrix} -s & 2-s & s-2 & s \\ 2s & -3s & 3s -2s & s \\ -s & 0 & s & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \]

This is the Catmull-Rom Spline Matrix. It is derived in way similar to Hermite and Bezier.

Parameter \(s \) is typically set to \(s=1/2 \).
Splines with More Continuity?

- So far, only C^1 continuity.
- How could we get C^2 continuity at control points?

Possible answers:
- Use higher degree polynomials
 - degree 4 = quartic, degree 5 = quintic, ... but these get computationally expensive, and sometimes wiggly
- Give up local control \Rightarrow natural cubic splines
 - A change to any control point affects the entire curve
- Give up interpolation \Rightarrow cubic B-splines
 - Curve goes near, but not through, the control points

Comparison of Basic Cubic Splines

<table>
<thead>
<tr>
<th>Type</th>
<th>Local Control</th>
<th>Continuity</th>
<th>Interpolation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hermite</td>
<td>YES</td>
<td>C^1</td>
<td>YES</td>
</tr>
<tr>
<td>Bezier</td>
<td>YES</td>
<td>C^1</td>
<td>YES</td>
</tr>
<tr>
<td>Catmull-Rom</td>
<td>YES</td>
<td>C^1</td>
<td>YES</td>
</tr>
<tr>
<td>Natural</td>
<td>NO</td>
<td>C^2</td>
<td>YES</td>
</tr>
<tr>
<td>B-Splines</td>
<td>YES</td>
<td>C^2</td>
<td>NO</td>
</tr>
</tbody>
</table>

Summary:
Cannot get C^2, interpolation and local control with cubics

Natural Cubic Splines

- If you want 2nd derivatives at joints to match up, the resulting curves are called natural cubic splines
- It’s a simple computation to solve for the cubics’ coefficients. (See Numerical Recipes in C book for code.)
- Finding all the right weights is a global calculation (solve tridiagonal linear system)

B-Splines

- Give up interpolation
 - the curve passes near the control points
 - best generated with interactive placement (because it’s hard to guess where the curve will go)
- Curve obeys the convex hull property
- C^2 continuity and local control are good compensation for loss of interpolation

B-Spline Basis

- We always need 3 more control points than the number of spline segments

\[
M_{30} = \begin{bmatrix}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 0 & 3 & 0 \\
1 & 4 & 1 & 0
\end{bmatrix}
\]

\[
G_{30} = \begin{bmatrix}
P_{i-3} \\
P_{i-2} \\
P_{i-1} \\
P_i
\end{bmatrix}
\]

Other common types of splines

- Non-uniform Splines
- Non-Uniform Rational Cubic curves (NURBS)
- NURBS are very popular and used in many commercial packages
How to Draw Spline Curves

- Basis matrix equation allows same code to draw any spline type
- **Method 1**: brute force
 - Calculate the coefficients
 - For each cubic segment, vary u from 0 to 1 (fixed step size)
 - Plug in u value, matrix multiply to compute position on curve
 - Draw line segment from last position to current position
- **What’s wrong with this approach?**
 - Draws in even steps of u
 - Even steps of u does not mean even steps of x
 - Line length will vary over the curve
 - Want to bound line length
 - Too long: curve looks jagged
 - Too short: curve is slow to draw

Drawing Splines, 2

- **Method 2**: recursive subdivision - vary step size to draw short lines

  ```python
  Subdivide(u0, u1, maxlen) 
  umid = (u0 + u1)/2 
  x0 = F(u0) 
  x1 = F(u1) 
  if |x1 - x0| > maxlen 
     Subdivide(u0, umid, maxlen) 
     Subdivide(umid, u1, maxlen) 
  else 
     drawline(x0, x1)
  ```

- Variant on Method 2 - subdivide based on curvature
 - Replace condition in "if" statement with straightness criterion
 - Draws fewer lines in flatter regions of the curve

Summary

- Piecewise cubic is generally sufficient
- Define conditions on the curves and their continuity
- **Most important:**
 - Basic curve properties (what are the conditions, controls, and properties for each spline type)
 - Generic matrix formula for uniform cubic splines $p(u) = u B G$
 - Given a definition, derive a basis matrix (do not memorize the matrices themselves)