CSCI 480 Computer Graphics
Lecture 4

Transformations

January 24, 2011
Jernej Barbic
University of Southern California

OpenGL Transformations

OpenGl Transformation Matrices

OpenGL Transformation Matrices
- Model-view matrix (4x4 matrix)
- Projection matrix (4x4 matrix)

vertices in
canonical
3D world
coordinate
system
vertices in
3D

Model-view

Projection

vertices in 2D

vertices in canonical
3D world
coordinate
system

vertices in 3D

Model-view

Projection

vertices in 2D

4x4 Model-view Matrix (this lecture)
- Render translated, rotated, scaled objects
- Position the camera

vertices in canonical
3D world
coordinate
system

vertices in 3D

Model-view

Projection

vertices in 2D

4x4 Projection Matrix (next lecture)
- Project from 3D to 2D

vertices in canonical
3D world
coordinate
system

vertices in 3D

Model-view

Projection

vertices in 2D

OpenGL Transformation Matrices

OpenGL Transformation Matrices
- Manipulated separately in OpenGL
 (must set matrix mode):
 glMatrixMode (GL_MODELVIEW);
 glMatrixMode (GL_PROJECTION);
Setting the Current Model-view Matrix

- Load or post-multiply

  ```
  glMatrixMode(GL_MODELVIEW);
  glLoadIdentity(); // very common usage
  float m[16] = { ... };
  glLoadMatrixf(m); // rare, advanced
  glMultMatrixf(m); // rare, advanced
  ```

- Use library functions

  ```
  glTranslatef(dx, dy, dz);
  glRotatef(angle, vx, vy, vz);
  glScalef(sx, sy, sz);
  ```

The OpenGL rendering code

```
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(x, y, z);
glRotatef(angle, x, y, z);
glScalef(sx, sy, sz);
renderBunny();
```

The rendering 3D coordinate system

Initially (after glLoadIdentity()) :

rendering coordinate system = world coordinate system

The rendering 3D coordinate system

```
glTranslatef(x, y, z);
```

The rendering 3D coordinate system

```
glRotatef(angle, x, y, z);
```

The rendering 3D coordinate system

```
glScalef(sx, sy, sz);
```
The OpenGL rendering code

glMatrixMode (GL_MODELVIEW);
glLoadIdentity();
glTranslatef(x, y, z);
glRotatef(angle, x, y, z);
glScalef(sx, sy, sz);
renderBunny();

Rendering more objects

How to obtain this frame?

Solution 1:
Find glTranslatef(...), glRotatef(...), glScalef(...)

Solution 2: gl{Push,Pop}Matrix

glMatrixMode (GL_MODELVIEW);
glLoadIdentity();
// render first bunny
glPushMatrix(); // store current matrix
glTranslatef(...);
glRotatef(...);
renderBunny();
glPopMatrix(); // pop matrix

// render second bunny
glPushMatrix(); // store current matrix
glTranslatef(...);
glRotatef(...);
renderBunny();
glPopMatrix(); // pop matrix

3D Math Review

Scalars
- Scalars α, β, γ from a scalar field
- Operations $\alpha+\beta$, $\alpha \cdot \beta$, 0, 1, $-\alpha$, $(\gamma)^{-1}$
- “Expected” laws apply
- Examples: rationals or reals with addition and multiplication
Vectors
• Vectors u, v, w from a vector space
• Vector addition $u + v$, subtraction $u - v$
• Zero vector 0
• Scalar multiplication αv

Euclidean Space
• Vector space over real numbers
• Three-dimensional in computer graphics
• Dot product: $\alpha = u \cdot v$
• $0 \cdot 0 = 0$
• u, v are orthogonal if $u \cdot v = 0$
• $|v|^2 = v \cdot v$ defines $|v|$, the length of v

Lines and Line Segments
• Parametric form of line: $P(\alpha) = P_0 + \alpha d$
• Line segment between Q and R: $P(\alpha) = (1-\alpha)Q + \alpha R$ for $0 \leq \alpha \leq 1$

Convex Hull
• Convex hull defined by
$P = \alpha_1 P_1 + \ldots + \alpha_n P_n$
for $\alpha_1 + \ldots + \alpha_n = 1$
and $0 \leq \alpha_i \leq 1$, $i = 1, \ldots, n$

Projection
• Dot product projects one vector onto another vector $u \cdot v = |u| |v| \cos(\theta)$

Normal Vector
• Cross product defines normal vector $u \times v = n$
$|u \times v| = |u| |v| |\sin(\theta)|$
• Right-hand rule
Plane
- Plane defined by point \(P_0 \) and vectors \(u \) and \(v \)
- \(u \) and \(v \) cannot be parallel
- Parametric form:
 \[T(\alpha, \beta) = P_0 + \alpha u + \beta v \]
 \((\alpha \text{ and } \beta \text{ are scalars})\)
- \(n = u \times v / |u \times v| \) is the normal
- \(n \cdot (P - P_0) = 0 \) if and only if \(P \) lies in plane

Coordinate Systems
- Let \(v_1, v_2, v_3 \) be three linearly independent vectors in a 3-dimensional vector space
- Can write any vector \(w \) as
 \[w = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 \]
 for scalars \(\alpha_1, \alpha_2, \alpha_3 \)

Frames
- Frame = origin \(P_0 \) + coordinate system
- Any point \(P = P_0 + \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 \)

In Practice Frames Often Orthogonal

Change of Coordinate System
- Bases \(\{u_1, u_2, u_3\} \) and \(\{v_1, v_2, v_3\} \)
- Express basis vectors \(u_i \) in terms of \(v_j \)
 \[u_1 = \gamma_{11} v_1 + \gamma_{12} v_2 + \gamma_{13} v_3 \]
 \[u_2 = \gamma_{21} v_1 + \gamma_{22} v_2 + \gamma_{23} v_3 \]
 \[u_3 = \gamma_{31} v_1 + \gamma_{32} v_2 + \gamma_{33} v_3 \]
- Represent in matrix form:
 \[\begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = M \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} \]
 \[M = \begin{bmatrix} \gamma_{11} & \gamma_{12} & \gamma_{13} \\ \gamma_{21} & \gamma_{22} & \gamma_{23} \\ \gamma_{31} & \gamma_{32} & \gamma_{33} \end{bmatrix} \]

Representing 3D transformations (and model-view matrices)
Linear Transformations
- 3×3 matrices represent linear transformations $a = Mb$
- Can represent rotation, scaling, and reflection
- Cannot represent translation

$$M = \begin{bmatrix}
\gamma_1 & \gamma_2 & \gamma_3 \\
\gamma_2 & \gamma_3 & \gamma_1 \\
\gamma_3 & \gamma_1 & \gamma_2 \\
\end{bmatrix}$$

In order to represent rotations, scales AND translations: Homogeneous Coordinates
- $P = a_1 v_1 + a_2 v_2 + a_3 v_3 + P_0$
- Then

$$P = \begin{bmatrix}
a_1 \
a_2 \
a_3 \
1 \\
\end{bmatrix}$$

- Homogeneous coordinates:
 $p = [a_1 \ a_2 \ a_3 \ 1]^T$

Homogeneous coordinates are transformed by 4×4 matrices

Affine Transformations (4×4 matrices)
- Translation
- Rotation
- Scaling
- Any composition of the above
- Later: projective (perspective) transformations
 - Also expressible as 4×4 matrices!

Translation
- $q = p + d$ where $d = [\alpha_x \ \alpha_y \ \alpha_z \ 0]^T$
- $p = [x \ y \ z \ 1]^T$
- $q = [x' \ y' \ z' \ 1]^T$
- Express in matrix form $q = T p$ and solve for T

$$T = \begin{bmatrix}
1 & 0 & 0 & \alpha_x \\
0 & 1 & 0 & \alpha_y \\
0 & 0 & 1 & \alpha_z \\
0 & 0 & 0 & 1 \\
\end{bmatrix}$$

Scaling
- $x' = \beta_x x$
- $y' = \beta_y y$
- $z' = \beta_z z$
- Express as $q = S p$ and solve for S

$$S = \begin{bmatrix}
\beta_x & 0 & 0 & 0 \\
0 & \beta_y & 0 & 0 \\
0 & 0 & \beta_z & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}$$
Rotation in 2 Dimensions

- Rotation by θ about the origin
- \(x' = x \cos \theta - y \sin \theta \)
- \(y' = x \sin \theta + y \cos \theta \)

- Express in matrix form:
 \[
 \begin{bmatrix}
 x' \\
 y'
 \end{bmatrix} =
 \begin{bmatrix}
 \cos(\theta) & -\sin(\theta) \\
 \sin(\theta) & \cos(\theta)
 \end{bmatrix}
 \begin{bmatrix}
 x \\
 y
 \end{bmatrix}
 \]
- Note that the determinant is 1

Rotation in 3 Dimensions

- Orthogonal matrices:
 \(RR^T = R^T R = I \)
 \(\det(R) = 1 \)

- Affine transformation:

\[
A = \begin{bmatrix}
R_{11} & R_{12} & R_{13} & 0 \\
R_{21} & R_{22} & R_{23} & 0 \\
R_{31} & R_{32} & R_{33} & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

Affine Matrices are Composed by Matrix Multiplication

- \(A = A_3 A_2 A_1 \)
- Applied from right to left
- \(A p = (A_1 A_2 A_3) p = A_1 (A_2 (A_3 p)) \)
- This is what happens in OpenGL when calling `glTranslate3f`, `glRotatef`, …

Summary

- OpenGL Transformation Matrices
- Vector Spaces
- Frames
- Homogeneous Coordinates
- Transformation Matrices