Non-Photorealistic Rendering

“A means of creating imagery that does not aspire to realism” - Stuart Green

Some NPR Categories

- Pen-and-Ink illustration
 - Techniques: cross-hatching, outlines, line art, etc.
- Painterly rendering
 - Styles: impressionist, expressionist, pointillist, etc.
- Cartoons
 - Effects: cartoon shading, distortion, etc.
- Technical illustrations
 - Characteristics: Matte shading, edge lines, etc.
- Scientific visualization
 - Methods: splatting, hedgehogs, etc.

Goals of Computer Graphics

- Traditional: Photorealism
- Sometimes, we want more
 - Cartoons
 - Artistic expression in paint, pen-and-ink
 - Technical illustrations
 - Scientific visualization
 [Lecture next week]

Outline

- Pen-and-Ink Illustrations
- Painterly Rendering
- Cartoon Shading
- Technical Illustrations
Hue
- Perception of “distinct” colors by humans
 - Red
 - Blue

Tone
- Perception of “brightness” of a color by humans
 - Also called lightness
 - Important in NPR

Pen-and-Ink Illustrations
- Strokes
 - Curved lines of varying thickness and density
- Texture
 - Conveyed by collection of strokes
- Tone
 - Perceived gray level across image or segment
- Outline
 - Boundary lines that disambiguate structure

Rendering Pipeline: Polygonal Surfaces with NPR
- 3D Model
- Lighting
- Visible Polygons
- Procedural Stroke Texture
- Stroke Clipping
- Outline Drawing
- Camera

Strokes and Stroke Textures
- Stroke generated by moving along straight path
- Stroke perturbed by
 - Waviness function (straightness)
 - Pressure function (thickness)
- Collected in stroke textures
 - Tone dependent
 - Resolution dependent
 - Orientation dependent
- How automatic are stroke textures?
Stroke Texture Examples

Stroke Texture Operations

Indication

• Selective addition of detail
• Difficult to automate
• User places detail segments interactively

Indication Example

Outlines

• Boundary or interior outlines
• Accented outlines for shadowing and relief
• Dependence on viewing direction
• Suggest shadow direction

Rendering Parametric Surfaces

• Stroke orientation and density
 – Place strokes along isoparametric lines
 – Choose density for desired tone
 – Tone = spacing / width
Parametric Surface Example

Hatching + standard rendering

Standard rendering techniques are still important!

Orientable Textures
- Inputs
 - Grayscale image to specify desired tone
 - Direction field
 - Stroke character
- Output
 - Stroke shaded image

Orientable Stroke Texture Example

Salisbury et al. 1997

Outline
- Pen-and-Ink Illustrations
- Painterly Rendering
- Cartoon Shading
- Technical Illustrations

Painterly Rendering
- Physical simulation
 - User applies brushstrokes
 - Computer simulates media (paper + ink)
- Automatic painting
 - User provides input image or 3D model
 - User specifies painting parameters
 - Computer generates all strokes
Physical Simulation Example

Curtis et al. 1997, Computer Generated Watercolor

Computer-Generated Watercolor

• Complex physical phenomena for artistic effect
• Build simple approximations
• Paper generation as random height field
• Simulated effects

Fluid Dynamic Simulation

• Use water velocity, viscosity, drag, pressure, pigment concentration, paper gradient
• Paper saturation and capacity
• Discretize and use cellular automata

Interactive Painting

User input
Simulation in progress
Finished painting

Automatic Painting Example

Hertzmann 1997

Automatic Painting from Images

• Start from color image: no 3D information
• Paint in resolution-based layers
 – Blur to current resolution
 – Select brush based on current resolution
 – Find area of largest error compared to real image
 – Place stroke
 – Increase resolution and repeat
• Layers are painted coarse-to-fine
• Styles controlled by parameters
Layered Painting

Painting Styles

• Style determined by parameters
 – Approximation thresholds
 – Brush sizes
 – Curvature filter
 – Blur factor
 – Minimum and maximum stroke lengths
 – Opacity
 – Grid size
 – Color jitter
• Encapsulate parameter settings as style

Layered Painting

Adding detail with smaller strokes

Blurring

Style Examples

Some Styles

• “Impressionist”
 – No random color, \(4 \leq \text{stroke length} \leq 16\)
 – Brush sizes 8, 4, 2; approximation threshold 100
• “Expressionist”
 – Random factor 0.5, \(10 \leq \text{stroke length} \leq 16\)
 – Brush sizes 8, 4, 2; approximation threshold 50
• “Pointilist”
 – Random factor \(~0.75, 0 \leq \text{stroke length} \leq 0\)
 – Brush sizes 4, 2; approximation threshold 100
• Not completely convincing to artists (yet?)

Outline

• Pen-and-Ink Illustrations
• Painterly Rendering
• Cartoon Shading
• Technical Illustrations

Cartoon Shading

• Shading model in 2D cartoons
 – Use material color and shadow color
 – Present lighting cues, shape, and context
• Stylistic
• Used in many animated movies
• Real-time techniques for games
Cartoon Shading as Texture Map

- Apply shading as 1D texture map

- Two-pass technique:
 Pass 1: standard shader
 Pass 2: use result from 1 as texture coordinates

Outline

- Pen-and-Ink Illustrations
- Painterly Rendering
- Cartoon Shading
- Technical Illustrations

Technical Illustrations

- Level of abstraction
 - Accent important 3D properties
 - Dimish or eliminate extraneous details
- Do not represent reality

Conventions in Technical Illustrations

- Black edge lines
- Cool to warm shading colors
- Single light source; shadows rarely used

Technical Illustration Example

- Phong shading
- Metal shading (anisotropic)
- Edge lines
- Gooch shading (cool to warm shift gives better depth perception)
The Future

• Smart graphics
 – Design from the user’s perspective
 – HCI, AI, Perception
• Artistic graphics
 – More tools for the creative artist
 – New styles and ideas

Summary

• Beyond photorealism
 – Artistic appeal
 – Technical explanation and illustration
 – Scientific visualization
• Use all traditional computer graphics tools
• Employ them in novel ways
• Have fun!