Rasterization (scan conversion)

- Final step in pipeline: rasterization
- From screen coordinates (float) to pixels (int)
- Writing pixels into frame buffer
- Separate buffers:
 - depth (z-buffer),
 - display (frame buffer),
 - shadows (stencil buffer),
 - blending (accumulation buffer)

Rasterizing a line

Digital Differential Analyzer (DDA)

- Represent line as
 \[y = m x + h \]
 where \(m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x} \)
- Then, if \(\Delta x = 1 \) pixel, we have \(\Delta y = m \Delta x = m \)

Digital Differential Analyzer

- Assume write_pixel(int x, int y, int value)
 for (i = x1; i <= x2; i++)
 {
 y += m;
 write_pixel(i, round(y), color);
 }
 Problems:
 - Requires floating point addition
 - Missing pixels with steep slopes: slope restriction needed

Digital Differential Analyzer (DDA)

- Assume \(0 \leq m \leq 1 \)
- Exploit symmetry
- Distinguish special cases
 But still requires floating point additions!
Bresenham’s Algorithm I

- Eliminate floating point addition from DDA
- Assume again \(0 \leq m \leq 1\)
- Assume pixel centers halfway between integers

Bresenham’s Algorithm II

- Decision variable \(a - b\)
 - If \(a - b > 0\) choose lower pixel
 - If \(a - b \leq 0\) choose higher pixel
- Goal: avoid explicit computation of \(a - b\)
- Step 1: re-scale \(d = (x_2 - x_1)(a - b) = \Delta x(a - b)\)
 - \(d\) is always integer

Bresenham’s Algorithm III

- Compute \(d\) at step \(k+1\) from \(d\) at step \(k\)
- Case: \(j\) did not change \((d_k > 0)\)
 - \(a\) decreases by \(m\), \(b\) increases by \(m\)
 - \((a - b)\) decreases by \(2m = 2(\Delta y / \Delta x)\)
 - \(\Delta x(a-b)\) decreases by \(2\Delta y\)

Bresenham’s Algorithm IV

- Case: \(j\) did change \((d_k \leq 0)\)
 - \(a\) decreases by \(m-1\), \(b\) increases by \(m-1\)
 - \((a - b)\) decreases by \(2m - 2 = 2(\Delta y / \Delta x - 1)\)
 - \(\Delta x(a-b)\) decreases by \(2(\Delta y - \Delta x)\)

Bresenham’s Algorithm V

- So \(d_{k+1} = d_k - 2\Delta y\) if \(d_k > 0\)
- And \(d_{k+1} = d_k - 2(\Delta y - \Delta x)\) if \(d_k \leq 0\)
- Final (efficient) implementation:

```c
void draw_line(int x1, int y1, int x2, int y2) {
    int x, y = y0;
    int twice_dx = 2 * (x2 - x1), twice_dy = 2 * (y2 - y1);
    int twice_dy_minus_twice_dx = twice_dy - twice_dx;
    int d = twice_dx / 2 - twice_dy;
    for (x = x1; x <= x2; x++) {
        write_pixel(x, y, color);
        if (d > 0) d -= twice_dy;
        else {y++; d -= twice_dy_minus_twice_dx;}
    }
}
```

Bresenham’s Algorithm VI

- Need different cases to handle \(m > 1\)
- Highly efficient
- Easy to implement in hardware and software
- Widely used
Outline

- Scan Conversion for Lines
- Scan Conversion for Polygons
- Antialiasing

Scan Conversion of Polygons

- Multiple tasks:
 - Filling polygon (inside/outside)
 - Pixel shading (color interpolation)
 - Blending (accumulation, not just writing)
 - Depth values (z-buffer hidden-surface removal)
 - Texture coordinate interpolation (texture mapping)
- Hardware efficiency is critical
- Many algorithms for filling (inside/outside)
- Much fewer that handle all tasks well

Filling Convex Polygons

- Find top and bottom vertices
- List edges along left and right sides
- For each scan line from bottom to top
 - Find left and right endpoints of span, x_l and x_r
 - Fill pixels between x_l and x_r
 - Can use Bresenham’s algorithm to update x_l and x_r

Filling Concave Polygons: Odd-Even Test

- Approach 1: odd-even test
- For each scan line
 - Find all scan line/polygon intersections
 - Sort them left to right
 - Fill the interior spans between intersections
- Parity rule: inside after an odd number of crossings

Edge vs Scan Line Intersections

- Brute force: calculate intersections explicitly
- Incremental method (Bresenham’s algorithm)
- Caching intersection information
 - Edge table with edges sorted by y_{min}
 - Active edges, sorted by x-intersection, left to right
- Process image from smallest y_{min} up

Concave Polygons: Tessellation

- Approach 2: divide non-convex, non-flat, or non-simple polygons into triangles
- OpenGL specification
 - Need accept only simple, flat, convex polygons
 - Tessellate explicitly with tessellator objects
 - Implicitly if you are lucky
- Most modern GPUs scan-convert only triangles
Flood Fill
- Draw outline of polygon
- Pick color seed
- Color surrounding pixels and recurse
- Must be able to test boundary and duplication
- More appropriate for drawing than rendering

Outline
- Scan Conversion for Lines
- Scan Conversion for Polygons
- Antialiasing

Aliasing
- Artifacts created during scan conversion
- Inevitable (going from continuous to discrete)
- Aliasing (name from digital signal processing): we sample a continues image at grid points
- Effect
 - Jagged edges
 - Moire patterns

More Aliasing

Antialiasing for Line Segments
- Use area averaging at boundary
 - (a) is aliased
 - (b) is antialiased
 - (c) is aliased + magnified
 - (d) is antialiased + magnified

Antialiasing by Supersampling
- Mostly for off-line rendering (e.g., ray tracing)
- Render, say, 3x3 grid of mini-pixels
- Average results using a filter
- Can be done adaptively
 - Stop if colors are similar
 - Subdivide at discontinuities
Supersampling Example

- Other improvements
 - Stochastic sampling: avoid sample position repetitions
 - Stratified sampling (jittering): perturb a regular grid of samples

Temporal Aliasing

- Sampling rate is frame rate (30 Hz for video)
- Example: spokes of wagon wheel in movies
- Solution: supersample in time and average
 - Fast-moving objects are blurred
 - Happens automatically with real hardware (photo and video cameras)
 - Exposure time is important (shutter speed)
 - Effect is called motion blur

Wagon Wheel Effect

Source: YouTube

Motion Blur Example

Achieve by stochastic sampling in time

T. Porter, Pixar, 1984
16 samples / pixel / timestep

Summary

- Scan Conversion for Polygons
 - Basic scan line algorithm
 - Convex vs concave
 - Odd-even rules, tessellation

- Antialiasing (spatial and temporal)
 - Area averaging
 - Supersampling
 - Stochastic sampling