Transformations

Vector Spaces
Euclidean Spaces
Frames
Homogeneous Coordinates
Transformation Matrices
[Angel, Ch. 3]
OpenGL Transformation Matrices

- Model-view matrix (4x4 matrix)
- Projection matrix (4x4 matrix)
4x4 Model-view Matrix (this lecture)

- Translate, rotate, scale objects
- Position the camera

vertices in 3D (object space) → Model-view → vertices in the camera coordinate system → Projection → vertices in 2D
4x4 Projection Matrix (next lecture)

- Project from 3D to 2D

vertices in 3D world coordinate system

vertices in canonical 3D coordinate system

vertices in 2D

vertices in 3D

Model-view

Projection
4x4 Model-view Matrix (this lecture)

- Translate, rotate, scale objects in world space
- Position and orient the camera
4x4 Model Matrix

- Translate, rotate, scale objects in world space
4x4 View Matrix

- Position and orient the camera
- From world space to camera space
OpenGL Transformation Matrices

- Manipulated separately in OpenGL
- Core profile: set them directly
- Compatibility profile: must set matrix mode

```c
glMatrixMode (GL_MODELVIEW);
glMatrixMode (GL_PROJECTION);
```
Setting the Modelview Matrix: Core Profile

- Set identity:

  ```
  openGLMatrix.SetMatrixMode(OpenGLMatrix::ModelView);
  openGLMatrix.LoadIdentity();
  ```

- Use our openGLMatrix library functions:
  ```
  openGLMatrix.Translate(dx, dy, dz);
  openGLMatrix.Rotate(angle, vx, vy, vz);
  openGLMatrix.Scale(sx, sy, sz);
  ```

- Upload m to the GPU:
  ```
  float m[16]; // column-major
  openGLMatrix.GetMatrix(m);
  GLboolean isRowMajor = GL_FALSE;
  glUniformMatrix4fv(h_modelViewMatrix, 1, isRowMajor, m);
  // note: h_modelViewMatrix is a handle of the shader modelview matrix variable (will discuss in Shaders lecture)
Setting the Modelview Matrix: Compatibility Profile

• Load or post-multiply

```cpp
glMatrixMode (GL_MODELVIEW);
glLoadIdentity(); // very common usage
float m[16] = { ... };
glLoadMatrixf(m); // rare, advanced
glMultMatrixf(m); // rare, advanced
```

• Use library functions

```cpp
glTranslatef(dx, dy, dz);
glRotatef(angle, vx, vy, vz);
glScalef(sx, sy, sz);
```
Translated, rotated, scaled object

world
The *rendering* coordinate system

Initially (after `LoadIdentity()`) :

rendering coordinate system = world coordinate system
The *rendering* coordinate system

```
Translate(x, y, z);
```

[world coordinate system] -> [rendering coordinate system]

\[[x, y, z]\]
The *rendering* coordinate system

\[
\text{Rotate}(\text{angle}, \ ax, \ ay, \ az);
\]
The *rendering* coordinate system

Scale(sx, sy, sz);
OpenGL pseudo-code

MatrixMode(ModelView);
LoadIdentity();
Translate(x, y, z);
Rotate(angle, ax, ay, az);
Scale(sx, sy, sz);
glUniformMatrix4fv(…);
renderBunny();

rendering coordinate system

world
Rendering more objects

How to obtain this frame?
Rendering more objects

Solution 1:

Find Translate(...), Rotate(...), Scale(...)

How to obtain this frame?
Solution 2:

LoadIdentity();
Find Translate(…), Rotate(…), Scale(…)

How to obtain this frame?

Rendering more objects
3D Math Review
Scalars

- Scalars $\alpha$, $\beta$, $\gamma$ from a *scalar field*
- Operations $\alpha + \beta$, $\alpha \cdot \beta$, 0, 1, $-\alpha$, $(\ )^{-1}$
- “Expected” laws apply
- Examples: rationals or reals with addition and multiplication
Vectors

- Vectors \( u, v, w \) from a vector space
- Vector addition \( u + v \), subtraction \( u - v \)
- Zero vector \( 0 \)
- Scalar multiplication \( \alpha v \)
Euclidean Space

- Vector space over real numbers
- Three-dimensional in computer graphics
- Dot product: \( \alpha = u \cdot v = u_1 v_1 + u_2 v_2 + u_3 v_3 \)
- \( 0 \cdot 0 = 0 \)
- \( u, v \) are orthogonal if \( u \cdot v = 0 \)
- \( |v|^2 = v \cdot v \) defines \( |v| \), the length of \( v \)
Lines and Line Segments

• Parametric form of line: \( P(\alpha) = P_0 + \alpha \, d \)

• Line segment between \( Q \) and \( R \):
  \[ P(\alpha) = (1-\alpha) \, Q + \alpha \, R \] for \( 0 \leq \alpha \leq 1 \)
Convex Hull

• Convex hull defined by

\[ P = \alpha_1 P_1 + \ldots + \alpha_n P_n \]

for \( \alpha_1 + \ldots + \alpha_n = 1 \)

and \( 0 \leq \alpha_i \leq 1, \ i = 1, \ldots, n \)
Projection

- Dot product projects one vector onto another vector

\[ u \cdot v = u_1 v_1 + u_2 v_2 + u_3 v_3 = |u| |v| \cos(\theta) \]

\[ \text{pr}_v u = (u \cdot v) v / |v|^2 \]
Cross Product

\[
\begin{pmatrix}
a_1 \\
a_2 \\
a_3
\end{pmatrix} \times \begin{pmatrix}
b_1 \\
b_2 \\
b_3
\end{pmatrix} = \begin{pmatrix}
a_2 b_3 - a_3 b_2 \\
a_3 b_1 - a_1 b_3 \\
a_1 b_2 - a_2 b_1
\end{pmatrix}
\]

- \(|a \times b| = |a| |b| |\sin(\theta)|

- Cross product is perpendicular to both \(a\) and \(b\)

- Right-hand rule

Plane

- Plane defined by point $P_0$ and vectors $u$ and $v$

- $u$ and $v$ should not be parallel

- Parametric form:
  \[ T(\alpha, \beta) = P_0 + \alpha u + \beta v \]
  ($\alpha$ and $\beta$ are scalars)

- $n = u \times v / |u \times v|$ is the normal

- $n \cdot (P - P_0) = 0$ if and only if $P$ lies in plane
Coordinate Systems

• Let \( v_1, v_2, v_3 \) be three linearly independent vectors in a 3-dimensional vector space.

• Can write any vector \( w \) as

\[
w = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3
\]

for some scalars \( \alpha_1, \alpha_2, \alpha_3 \).
Frames

- Frame = origin $P_0$ + coordinate system
- Any point $P = P_0 + \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3$
In Practice, Frames are Often Orthogonal
Representing 3D transformations (and model-view matrices)
Linear Transformations

- 3 x 3 matrices represent linear transformations
  \( a = M b \)
- Can represent rotation, scaling, and reflection
- Cannot represent translation

\[
M = \begin{bmatrix}
\gamma_{11} & \gamma_{12} & \gamma_{13} \\
\gamma_{21} & \gamma_{22} & \gamma_{23} \\
\gamma_{31} & \gamma_{32} & \gamma_{33}
\end{bmatrix}
\]
In order to represent rotations, scales AND translations: Homogeneous Coordinates

• Augment $[\alpha_1 \ \alpha_2 \ \alpha_3]^T$ by adding a fourth component (1):
  $p = [\alpha_1 \ \alpha_2 \ \alpha_3 \ 1]^T$

• Homogeneous property:
  $p = [\alpha_1 \ \alpha_2 \ \alpha_3 \ 1]^T = [\beta \alpha_1 \ \beta \alpha_2 \ \beta \alpha_3 \ \beta]^T$, for any scalar $\beta \neq 0$
Homogeneous coordinates are transformed by 4x4 matrices
Affine Transformations (4x4 matrices)

- Translation
- Rotation
- Scaling
- Any composition of the above
- Later: projective (perspective) transformations
  - Also expressible as 4 x 4 matrices!
Translation

• \( q = p + d \) where \( d = [\alpha_x \quad \alpha_y \quad \alpha_z \quad 0]^T \)

• \( p = [x \quad y \quad z \quad 1]^T \)

• \( q = [x' \quad y' \quad z' \quad 1]^T \)

• Express in matrix form \( q = Tp \) and solve for \( T \)

\[
T = \begin{bmatrix}
1 & 0 & 0 & \alpha_x \\
0 & 1 & 0 & \alpha_y \\
0 & 0 & 1 & \alpha_z \\
0 & 0 & 0 & 1
\end{bmatrix}
\]
Scaling

- $x' = \beta_x x$
- $y' = \beta_y y$
- $z' = \beta_z z$
- Express as $q = S \mathbf{p}$ and solve for $S$
Rotation in 2 Dimensions

- Rotation by $\theta$ about the origin
- $x' = x \cos \theta - y \sin \theta$
- $y' = x \sin \theta + y \cos \theta$

Express in matrix form:

\[
\begin{bmatrix}
  x' \\
  y'
\end{bmatrix} =
\begin{bmatrix}
  \cos(\theta) & -\sin(\theta) \\
  \sin(\theta) & \cos(\theta)
\end{bmatrix}
\begin{bmatrix}
  x \\
  y
\end{bmatrix}
\]

- Note that the determinant is 1
Rotation in 3 Dimensions

• Orthogonal matrices:

\[ R R^T = R^T R = I \]
\[ \det(R) = 1 \]

• Affine transformation:

\[
A = \begin{bmatrix}
R_{11} & R_{12} & R_{13} & 0 \\
R_{21} & R_{22} & R_{23} & 0 \\
R_{31} & R_{32} & R_{33} & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]
Affine Matrices are Composed by Matrix Multiplication

- \( A = A_1 A_2 A_3 \)
- Applied from right to left
- \( A \ p = (A_1 A_2 A_3) \ p = A_1 (A_2 (A_3 \ p)) \)
- Compatibility mode:
  When calling `glTranslatef`, `glRotatef`, or `glScalef`, OpenGL forms the corresponding 4x4 matrix, and multiplies the current modelview matrix with it.
Summary

• OpenGL Transformation Matrices
• Vector Spaces
• Frames
• Homogeneous Coordinates
• Transformation Matrices