CSCI 420 Computer Graphics
Lecture 1
Course Overview

Administrative Issues
Modeling
Animation
Rendering
OpenGL Programming
[Angel Ch. 1]

Jernej Barbic
University of Southern California

Course Information On-Line
http://www.bcf.usc.edu/~jbarbic/cs420-s18/
– Schedule (slides, readings)
– Assignments (details, due dates)
– Software (libraries, hints)
– Resources (books, tutorials, links)

Submit assignments on Blackboard:
https://blackboard.usc.edu
Forum for questions is on Piazza:
https://piazza.com/usc/spring2018/csci420/home

Course slides
http://www.bcf.usc.edu/~jbarbic/cs420-s18/
• Full-color version
• 6-slides-per-page B&W version
 -- good for printing
• Posted in advance of lectures
 -- bring to class & annotate
• Color viewing in Acrobat Reader:
 Disable "Replace Document Colors" in
 Preferences. Accessibility (if enabled)

About me
Associate (tenured) professor in CS
Post-doc at MIT
PhD, Carnegie Mellon University
jnb@usc.edu
Mon 4:00-5:00, SAL 240

About the teacher
Background:
BSc Mathematics
PhD Computer Science

Research interests:
graphics, animation, real-time
physics, control, sound, haptics

Practice:
Tech transfer, startup companies,
intellectual property law
Chief Technology Officer, Ziva Dynamics

Teaching Assistant
Bohan Wang
Office hours:
Tuesday 4pm-5pm,
and Friday 4pm-5pm
Course Producer

Ming Chen
Same office hours as TA

Prerequisites

- CSCI 104 (Data Structures and Object-Oriented Design)
- MATH 225 (Linear Algebra and Differential Equations)
- Familiarity with calculus and linear algebra
- C programming skills
- Junior, senior, MS or PhD student, or explicit permission of instructor
- See me if you are missing any and we haven't discussed it

Textbooks

- Interactive Computer Graphics
 A top-down approach with OpenGL, Sixth Edition
 Edward Angel, Addison-Wesley
- OpenGL Programming Guide ("Red Book")
 Basic version also available on-line (see Resources)

Grading

- 51% Programming Assignments (3x 17%)
- 19% Midterm (one sheet of notes only, in class)
- 30% Final (one sheet of notes only, in class)

Academic integrity

- No collaboration!
- Do not copy any parts of any of the assignments from anyone
- Do not look at other students' code, papers, assignments or exams
- USC Office of Student Judicial Affairs and Community Standards will be notified
Assignment Policies

• Programming assignments
 - Hand in via Blackboard by end of due date
 - Functionality and features
 - Style and documentation
 - Artistic impression
• 3 late days, usable any time during semester
• Academic integrity policy applied rigorously

Computer Graphics

One of the "core" computer science disciplines:

Algorithms and Theory
Artificial Intelligence
Computer Architecture
Computer Graphics and Visualization
Computer Security
Computer Systems
Databases
Networks
Programming Languages
Software Engineering

Course Overview

Theory: Computer graphics disciplines:
 – Modeling: how to represent objects
 – Animation: how to control and represent motion
 – Rendering: how to create images of objects
 – Image Processing: how to edit images

Practice: OpenGL graphics library

Not in this course:
 – Human-computer interaction
 – Graphic design
 – DirectX API

OpenGL Graphics Library

• Main focus:
 Core OpenGL Profile ("Modern OpenGL")
• OpenGL 3.2 and higher
• Shaders
• Homeworks use the Core Profile
• We will also study:
 Compatibility Profile ("Classic OpenGL")

Computer Graphics Disciplines

Rendering
Geometry (Modeling)
Animation
Image Processing

Computer Graphics Goals I

• Synthetic images indistinguishable from reality
• Practical, scientifically sound, in real time
Example: Ray Tracing

Barbic, James, SIGGRAPH 2010
Thurey, Wojtan, Gross, Turk, SIGGRAPH 2010

Example: Physics + Computational Geometry + Animation + Ray Tracing

Barbic, James, SIGGRAPH 2010

Example: Radiosity

Example: Computer Graphics Goals II

- Creating a new reality (not necessarily scientific)
- Practical, aesthetically pleasing, in real time

Example: Illustrating Smooth Surfaces

A. Hertzmann, D. Zorin, SIGGRAPH 2000

Non-photorealistic rendering (NPR)

Example: Scene Completion

J. Hays, A. Efros, SIGGRAPH 2007
SIGGRAPH

• Main computer graphics event in the world
• Once per year
• 30,000 attendees
• Academia, industry

1. Course Overview

• Administrative Issues
• Topics Outline (next)

2. OpenGL Basics

• Graphics pipeline
• Primitives and attributes
• Color
• OpenGL core and compatibility profiles
• [Angel, Ch. 1, 2]

3. Input and Interaction

• Clients and servers
• Event driven programming
• Hidden-surface removal
• [Angel, Ch. 2]

4. GPU Shaders

• Vertex program
• Fragment program
• Pipeline program
• Shading languages
• GLSL shading language
• Interaction with OpenGL

5. Objects & Transformations

• Linear algebra review
• Coordinate systems and frames
• Rotation, translation, scaling
• Homogeneous coordinates
• OpenGL transformation matrices
• [Angel, Ch. 3]
6. Viewing and Projection
- Orthographic projection
- Perspective projection
- Camera positioning
- Projections in OpenGL
- [Angel, Ch. 4]

7. Hierarchical Models
- Re-using objects
- Animations
- OpenGL routines
- Parameters and transformations
- [Angel, Ch. 8]

8. Light and Shading
- Light sources
- Ambient, diffuse, and specular reflection
- Normal vectors
- Material properties in OpenGL
- Radiosity
- [Angel, Ch. 5]

9. Curves and Surfaces
- Review of 3D-calculus
- Explicit representations
- Implicit representations
- Parametric curves and surfaces
- Hermite curves and surfaces
- Bezier curves and surfaces
- Splines
- Curves and surfaces in OpenGL
- [Angel, Ch. 10]

10. Rendering
- Clipping
- Bounding boxes
- Hidden-surface removal
- Line drawing
- Scan conversion
- Anti-aliasing
- [Angel, Ch. 6]

11. Textures and Pixels
- Texture mapping
- OpenGL texture primitives
- Bump maps
- Environment maps
- Opacity and blending
- Image filtering
- [Angel, Ch. 7]
12. Ray Tracing
- Basic ray tracing [Angel, Ch. 11]
- Spatial data structures [Angel, Ch. 8]
- Motion Blur
- Soft Shadows

www.yafaray.org

13. Radiosity
- Local vs global illumination model
- Interreflection between surfaces
- Radiosity equation
- Solution methods
- [Angel Ch. 11]

Cornell University

14. Physically Based Models
- Particle systems
- Spring forces
- Cloth
- Collisions
- Constraints
- Fractals
- [Angel, Ch. 9]

15. Scientific Visualization
- Height fields and contours
- Isosurfaces
- Volume rendering
- Texture mapping of volumes
- [Angel Ch. 11]

Earth Mantle Heat Convection, University of Utah

Guest Lecture:
TBA

“Wildcard” Lectures:
- Graphics hardware
- More on animation
- Motion capture
- Virtual reality and interaction
- Special effects in movies
- Video game programming
- Non-photo-realistic rendering

Hot Application Areas
- Film visual effects
- Feature animation
- Virtual reality
- PC graphics boards
- Video games
- Visualization (science, architecture, space)
Hot Research Topics

- Modeling
 - getting models from the real world
 - multi-resolution
- Animation
 - physically based simulation
 - motion capture
- Rendering:
 - more realistic: image-based modeling
 - less realistic: impressionist, pen & ink

Acknowledgments

- Jessica Hodgins (CMU)
- Frank Pfenning (CMU)
- Paul Heckbert (Nvidia)