CSCI 420 Computer Graphics
Lecture 11

Lighting and Shading

Light Sources
Phong Illumination Model
Normal Vectors
[Angel Ch. 5]

Jernej Barbic
University of Southern California
Outline

• Global and Local Illumination
• Normal Vectors
• Light Sources
• Phong Illumination Model
• Polygonal Shading
• Example
Global Illumination

- Ray tracing
- Radiosity
- Photon Mapping
- Follow light rays through a scene
- Accurate, but expensive (off-line)
Raytracing Example

Martin Moeck,
Siemens Lighting
Radiosity Example

Restaurant Interior. Guillermo Leal, Evolucion Visual
Local Illumination

- Approximate model
- Local interaction between light, surface, viewer
- Phong model (this lecture): fast, supported in OpenGL
- GPU shaders
- Pixar Renderman (offline)
Local Illumination

• Approximate model

• Local interaction between light, surface, viewer

• Color determined only based on surface normal, relative camera position and relative light position

• What effects does this ignore?
Outline

• Global and Local Illumination
• **Normal Vectors**
• Light Sources
• Phong Illumination Model
• Polygonal Shading
• Example
Normal Vectors

• Must calculate and specify the normal vector
 – Even in OpenGL!

• Two examples: plane and sphere
Normals of a Plane, Method I

- Method I: given by $ax + by + cz + d = 0$
- Let p_0 be a known point on the plane
- Let p be an arbitrary point on the plane
- Recall: $u \cdot v = 0$ if and only if u orthogonal to v
- $n \cdot (p - p_0) = n \cdot p - n \cdot p_0 = 0$

- Consequently $n_0 = [a \ b \ c]^T$
- Normalize to $n = n_0/|n_0|$
Normals of a Plane, Method II

• Method II: plane given by p_0, p_1, p_2
• Points must not be collinear
• Recall: $u \times v$ orthogonal to u and v

• $n_0 = (p_1 - p_0) \times (p_2 - p_0)$

• Order of cross product determines orientation
• Normalize to $n = n_0/|n_0|$
Normals of Sphere

- Implicit Equation: \(f(x, y, z) = x^2 + y^2 + z^2 - 1 = 0 \)
- Vector form: \(f(p) = p \cdot p - 1 = 0 \)
- Normal given by gradient vector

\[
\begin{align*}
 n_0 &= \left[\begin{array}{c}
 \frac{\partial f}{\partial x} \\
 \frac{\partial f}{\partial y} \\
 \frac{\partial f}{\partial z}
 \end{array} \right] \\
 &= \left[\begin{array}{c}
 2x \\
 2y \\
 2z
 \end{array} \right] \\
 &= 2p
\end{align*}
\]

- Normalize \(n_0 / |n_0| = 2p/2 = p \)
Reflected Vector

- Perfect reflection: angle of incident equals angle of reflection
- Also: l, n, and r lie in the same plane
- Assume $|l| = |n| = 1$, guarantee $|r| = 1$

\[l \cdot n = \cos(\theta) = n \cdot r \]

\[r = \alpha l + \beta n \]

Solution: $\alpha = -1$ and $\beta = 2 (l \cdot n)$

\[r = 2 (l \cdot n) n - l \]
Normals Transformed by Modelview Matrix

Modelview matrix M (shear in this example)

Undeformed

Transformed with M (incorrect)

Transformed with $(M^{-1})^T$ (correct)
Normals Transformed by Modelview Matrix

When M is rotation, $M = (M^{-1})^T$

Undeformed

Transformed with $M = (M^{-1})^T$
(correct)
Normals Transformed by Modelview Matrix (proof of \((M^{-1})^T\) transform)

Point \((x,y,z,w)\) is on a plane in 3D (homogeneous coordinates) if and only if
\[
a x + b y + c z + d w = 0, \quad \text{or} \quad [a \ b \ c \ d] [x \ y \ z \ w]^T = 0.
\]

Now, let’s transform the plane by \(M\).

Point \((x,y,z,w)\) is on the transformed plane if and only if \(M^{-1} [x \ y \ z \ w]^T\) is on the original plane:
\[
[a \ b \ c \ d] M^{-1} [x \ y \ z \ w]^T = 0.
\]
So, equation of transformed plane is \([a' \ b' \ c' \ d'] [x \ y \ z \ w]^T = 0\), for
\[
[a' \ b' \ c' \ d']^T = (M^{-1})^T [a \ b \ c \ d]^T.
\]
Outline

• Global and Local Illumination
• Normal Vectors
• Light Sources
• Phong Illumination Model
• Polygonal Shading
• Example
Light Sources and Material Properties

- Appearance depends on
 - Light sources, their locations and properties
 - Material (surface) properties:
 - Viewer position
Types of Light Sources

• **Ambient light**: no identifiable source or direction

• **Point source**: given only by point

• **Distant light**: given only by direction

• **Spotlight**: from source in direction
 – Cut-off angle defines a cone of light
 – Attenuation function (brighter in center)
Point Source

- Given by a point p_0
- Light emitted equally in all directions
- Intensity decreases with square of distance

\[
I \propto \frac{1}{|p - p_0|^2}
\]
Limitations of Point Sources

- Shading and shadows inaccurate
- Example: penumbra (partial “soft” shadow)
- Similar problems with highlights
- Compensate with attenuation
 \[q = \frac{1}{a + bq + cq^2} \]
 q = distance \(|p - p_0|\)
 a, b, c constants
- Softens lighting
- Better with ray tracing
- Better with radiosity
Distant Light Source

• Given by a direction vector \([x \ y \ z]\)
Spotlight

- Light still emanates from point
- Cut-off by cone determined by angle θ
Global Ambient Light

- Independent of light source
- Lights entire scene
- Computationally inexpensive
- Simply add $[G_R \ G_G \ G_B]$ to every pixel on every object
- Not very interesting on its own.
 A cheap hack to make the scene brighter.
Outline

• Global and Local Illumination
• Normal Vectors
• Light Sources
• Phong Illumination Model
• Polygonal Shading
• Example
Phong Illumination Model

- Calculate color for arbitrary point on surface
- Compromise between realism and efficiency
- Local computation (no visibility calculations)
- Basic inputs are material properties and I, n, v:

 \[I = \text{unit vector to light source} \]
 \[n = \text{surface normal} \]
 \[v = \text{unit vector to viewer} \]
 \[r = \text{reflection of } I \text{ at } p \]

 (determined by I and n)
Phong Illumination Overview

1. Start with global ambient light \([G_R \ G_G \ G_B]\)
2. Add contributions from each light source
3. Clamp the final result to \([0, 1]\)

- Calculate each color channel \((R,G,B)\) separately
- Light source contributions decomposed into
 - Ambient reflection
 - Diffuse reflection
 - Specular reflection
- Based on ambient, diffuse, and specular lighting and material properties
Ambient Reflection

\[l_a = k_a L_a \]

- Intensity of ambient light is uniform at every point
- Ambient reflection coefficient \(k_a \geq 0 \)
- May be different for every surface and \(r,g,b \)
- Determines reflected fraction of ambient light
- \(L_a \) = ambient component of light source (can be set to different value for each light source)
- Note: \(L_a \) is not a physically meaningful quantity
Diffuse Reflection

- Diffuse reflector scatters light
- Assume equally all direction
- Called **Lambertian** surface
- Diffuse reflection coefficient $k_d \geq 0$
- Angle of incoming light is important
Lambert’s Law

Intensity depends on angle of incoming light.
Diffuse Light Intensity Depends On Angle OfIncoming Light

- Recall
 \(I = \) unit vector to light
 \(n = \) unit surface normal
 \(\theta = \) angle to normal

- \(\cos \theta = I \cdot n \)

- \(I_d = k_d L_d (I \cdot n) \)

- With attenuation:
 \[I_d = \frac{k_d L_d}{a + bq + cq^2} (I \cdot n) \]
 \(q = \) distance to light source,
 \(L_d = \) diffuse component of light
Specular Reflection

• Specular reflection coefficient $k_s \geq 0$
• Shiny surfaces have high specular coefficient
• Used to model specular highlights
• Does **not** give the mirror effect
 (need other techniques)
Specular Reflection

• Recall
 \(\mathbf{v} = \text{unit vector to camera} \)
 \(\mathbf{r} = \text{unit reflected vector} \)
 \(\phi = \text{angle between } \mathbf{v} \text{ and } \mathbf{r} \)

• \(\cos \phi = \mathbf{v} \cdot \mathbf{r} \)

• \(I_s = k_s L_s (\cos \phi)^\alpha \)

• \(L_s \) is specular component of light
• \(\alpha \) is shininess coefficient
• Can add distance term as well
Shininess Coefficient

- $I_s = k_s L_s (\cos \phi)^\alpha$
- α is the shininess coefficient

Higher α gives narrower curves

Source: Univ. of Calgary
Summary of Phong Model

• Light components for each color:
 – Ambient (L_a), diffuse (L_d), specular (L_s)

• Material coefficients for each color:
 – Ambient (k_a), diffuse (k_d), specular (k_s)

• Distance q for surface point from light source

\[
I = \frac{1}{a + bq + cq^2} \left(k_d L_d (l \cdot n) + k_s L_s (r \cdot v)^\alpha \right) + k_a L_a
\]

$l = \text{unit vector to light}$ \hspace{1cm} $r = l$ reflected about n

$n = \text{surface normal}$ \hspace{1cm} $v = \text{vector to viewer}$
BRDF

- Bidirectional Reflection Distribution Function
- Must measure for real materials
- Isotropic vs. anisotropic
- Mathematically complex
- Implement in a fragment shader

Lighting properties of a human face were captured and face re-rendered; Institute for Creative Technologies
Outline

• Global and Local Illumination
• Normal Vectors
• Light Sources
• Phong Illumination Model
• Polygonal Shading
• Example
Polygonal Shading

• Now we know vertex colors
 – either via OpenGL lighting,
 – or by setting directly via glColor3f if lighting disabled

• How do we shade the interior of the triangle?
Polygonal Shading

- Curved surfaces are approximated by polygons

- How do we shade?
 - Flat shading
 - Interpolative shading
 - Gouraud shading
 - Phong shading (different from Phong illumination!)
Flat Shading

- Shading constant across polygon
- Core profile: Use interpolation qualifiers in the fragment shader
- Compatibility profile: Enable with `glShadeModel(GL_FLAT);`
- Color of last vertex determines interior color
- Only suitable for very small polygons

![Diagram of a triangle with vertices labeled v0, v1, v2]
Flat Shading Assessment

- Inexpensive to compute
- Appropriate for objects with flat faces
- Less pleasant for smooth surfaces
Interpolative Shading

- Interpolate color in interior
- Computed during scan conversion (rasterization)
- Core profile: enabled by default
- Compatibility profile: enable with `glShadeModel(GL_SMOOTH);`
- Much better than flat shading
- More expensive to calculate (but not a problem)
Gouraud Shading
Invented by Henri Gouraud, Univ. of Utah, 1971

- Special case of interpolative shading
- How do we calculate vertex normals for a polygonal surface? Gouraud:
 1. average all adjacent face normals
 \[n = \frac{n_1 + n_2 + n_3 + n_4}{|n_1 + n_2 + n_3 + n_4|} \]
 2. use \(n \) for Phong lighting
 3. interpolate vertex colors into the interior

- Requires knowledge about which faces share a vertex
Data Structures for Gouraud Shading

• Sometimes vertex normals can be computed directly (e.g. height field with uniform mesh)
• More generally, need data structure for mesh
• Key: which polygons meet at each vertex
Phong Shading ("per-pixel lighting")
Invented by Bui Tuong Phong, Univ. of Utah, 1973

• At each pixel (as opposed to at each vertex):
 1. Interpolate normals (rather than colors)
 2. Apply Phong lighting to the interpolated normal

• Significantly more expensive

• Done off-line or in GPU shaders (not supported in OpenGL directly)
Phong Shading Results

Michael Gold, Nvidia

- Single light Phong Lighting, Gouraud Shading
- Two lights Phong Lighting, Gouraud Shading
- Two lights Phong Lighting, Phong Shading
Outline

- Global and Local Illumination
- Normal Vectors
- Light Sources
- Phong Illumination Model
- Polygonal Shading
- Example
Phong Shader: Vertex Program

#version 150

in vec3 position; // input vertex position and normal, in world-space
in vec3 normal;

out vec3 viewPosition; // vertex position and normal, in view-space
out vec3 viewNormal;

uniform mat4 modelViewMatrix; // transformation matrices
uniform mat4 normalMatrix;
uniform mat4 projectionMatrix;
Phong Shader: Vertex Program

void main()
{
 // view-space position of the vertex
 vec4 viewPosition4 = modelViewMatrix * vec4(position, 1.0f);
 viewPosition = viewPosition4.xyz;

 // final position in the normalized device coordinates space
 gl_Position = projectionMatrix * viewPosition4;
 // view-space normal
 viewNormal = normalize((normalMatrix*vec4(normal, 0.0f)).xyz);
}

Phong Shader: Fragment Program

in vec3 viewPosition;
in vec3 viewNormal;

out vec4 c; // output color

uniform vec4 lightAmbient;
uniform vec4 lightDiffuse;
uniform vec4 lightSpecular;
uniform vec3 viewLightDirection;

uniform vec4 matKa;
uniform vec4 matKd;
uniform vec4 matKs;
uniform float matKsExp;

interpolated from vertex program outputs
Phong Shader: Fragment Program

void main()
{
 // camera is at (0,0,0) after the modelview transformation
 vec3 eyedir = normalize(vec3(0, 0, 0) - viewPosition);
 // reflected light direction
 vec3 reflectDir = -reflect(viewLightDirection, viewNormal);
 // Phong lighting
 float kd = max(dot(viewLightDirection, viewNormal), 0.0f);
 float ks = max(dot(reflectDir, eyedir), 0.0f);
 // compute the final color
 c = matKa * lightAmbient + matKd * kd * lightDiffuse +
 matKs * pow(ks, matKsExp) * lightSpecular;
}
VBO Layout: positions and normals

VBO

<table>
<thead>
<tr>
<th>VBO</th>
<th>gg5’</th>
<th>53vs</th>
<th>ff&$</th>
<th>#422</th>
<th>424d</th>
<th>^3d</th>
<th>aa7y</th>
<th>oarT</th>
<th>J^23</th>
<th>Gr/</th>
<th>%</th>
<th>fryu</th>
<th>*xpP</th>
</tr>
</thead>
<tbody>
<tr>
<td>vtx1</td>
<td>vtx1</td>
<td>vtx1</td>
<td>vtx2</td>
<td>vtx2</td>
<td>vtx2</td>
<td>nor1</td>
<td>nor1</td>
<td>nor1</td>
<td>nor2</td>
<td>nor2</td>
<td>nor2</td>
<td>nor2</td>
<td>nor2</td>
</tr>
<tr>
<td>x</td>
<td>y</td>
<td>z</td>
<td>x</td>
<td>y</td>
<td>z</td>
<td>x</td>
<td>y</td>
<td>z</td>
<td>x</td>
<td>y</td>
<td>z</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **in vec3 position**
- **in vec3 normal**
VAO code ("normal" shader variable)

During initialization:

```cpp
GLuint loc = glGetAttribLocation(program, "normal");
glEnableVertexAttribArray(loc); // enable the "normal" attribute
const void * offset = (const void*) sizeof(positions); // set the layout of the "normal" attribute data
```

```cpp
glVertexAttribPointer(loc, 3, GL_FLOAT, normalized, stride, offset);
```
void display()
{
 glClear (GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);
 openGLMatrix->SetMatrixMode(OpenGLMatrix::ModelView);
 openGLMatrix->LoadIdentity();
 openGLMatrix->LookAt(ex, ey, ez, fx, fy, fz, ux, uy, uz);

 float view[16];
 openGLMatrix->GetMatrix(view); // read the view matrix

 // get a handle to the program
 GLuint program = pipelineProgram->GetProgramHandle();
 // get a handle to the viewLightDirection shader variable
 GLint h_viewLightDirection =
 glGetUniformLocation(program, "viewLightDirection");
Upload the light direction vector to GPU

float lightDirection[3] = { 0, 1, 0 }; // the “Sun” at noon
float viewLightDirection[3]; // light direction in the view space
// the following line is pseudo-code:
viewLightDirection = (view * float4(lightDirection, 0.0)).xyz;

// upload viewLightDirection to the GPU
glUniform3fv(h_viewLightDirection, 1, viewLightDirection);

// continue with model transformations
openGLMatrix->Translate(x, y, z);
...

renderBunny(); // render, via VAO
glutSwapBuffers();
}
Upload the normal matrix to GPU

// in the display function:

// get a handle to the program
GLuint program = pipelineProgram->GetProgramHandle();

// get a handle to the normalMatrix shader variable
GLInt h_normalMatrix =
 glGetUniformLocation(program, "normalMatrix");

float n[16];
matrix->SetMatrixMode(OpenGLMatrix::ModelView);
matrix->GetNormalMatrix(n); // get normal matrix

// upload n to the GPU
GLboolean isRowMajor = GL_FALSE;
glUniformMatrix4fv(h_normalMatrix, 1, isRowMajor, n);

Summary

• Global and Local Illumination
• Normal Vectors
• Light Sources
• Phong Illumination Model
• Polygonal Shading
• Example