CS420 Assignment 3 Hints
Ray Tracing
Step 1: send rays
• Send out rays from camera position (0,0,0) pointing to $-z$
• Image size 640x480
 • For debugging, use smaller size
• Send out rays from camera position (0,0,0) pointing to \(-z\)
• Image size 640x480
 • For debugging, use smaller size
Step 2: Intersect with scene

- Sphere & triangle
- Analytical solution
Debugging

- **Do step by step**
 - Intersect with sphere, test code
 - Intersect with triangle, test code
 - Compute sphere color, test code
 - Compute triangle color, test code
Tips

- Ensure $B \neq 0$ when dividing A / B
- Before calling \sqrt{x}, make sure $x \geq 0$
- Remember to normalize the direction vector
- Remember to check $\text{len}(\text{dir}) \neq 0$ before dividing by the length
Tips

- Distinguish between normals:
 - normal of a triangle
 - vertex normal
 - normal interpolated from vertex normals
Tips

- Floating-point operations not accurate:
 - When computing shadow rays, use:
 \[\text{distanceFromLightToFirstObject} < \text{distanceFromLightToTargetSurface} - \text{smallValue} \]
 - Otherwise, artifacts appear… (see next image)
Extra Credits

• **Super-sampling**
 • anti-aliasing
 • can do adaptively: if some region is smooth, no need to super sampling

• **Ray tracing**
 \[(1-ks)\times \text{localPhongColor} + ks\times \text{colorOfReflectedRay}\]
 • You can also add refraction
Extra Credit (Cont’d)

• Animation
• Soft shadows
• Parallel computing for faster rendering
 • OpenMP: utilize multi-core CPUs
 • Cuda: use GPU to do parallel computing