For every time step of your simulation, the curve parameter \(u \) can be updated using the following equation:

\[
u_{\text{new}} = u_{\text{current}} + (\Delta t) \frac{\sqrt{2g(h_{\text{max}} - h)}}{\| dp/du \|}\]

where \(\Delta t \) is the time step,
\(g \) is the gravity constant,
\(h_{\text{max}} \) is the maximum height of the track,
\(h \) is the current height of the roller coaster,
\(p \) is a function of \(u \) (i.e. \(p(u) \)) that computes the position (in 3D) of the roller coaster at \(u = u_{\text{current}} \) (see p.628 of the textbook “Interactive Computer Graphics: A Top-Down Approach Using OpenGL” for the exact equation of \(p(u) \)).

Note that \(\frac{dp}{du} \) is the derivative of \(p(u) \) with respect to \(u \), and the derivative is evaluated at \(u = u_{\text{current}} \). Also, \(\| dp/du \| \) is the magnitude (i.e. \(\text{mag} = \sqrt{x^2 + y^2 + z^2} \)) of the vector \(\frac{dp}{du} \).