Non-Photorealistic Rendering

Goals of Computer Graphics:

- Traditional: Photorealism
- Sometimes, we want more
 - Cartoons
 - Artistic expression in paint, pen-and-ink
 - Technical illustrations
 - Scientific visualization
 [Lecture next week]

Pen-and-ink Illustrations
Painterly Rendering
Cartoon Shading
Technical Illustrations

Non-Photorealistic Rendering

“A means of creating imagery that does not aspire to realism” - Stuart Green

Some NPR Categories

- Pen-and-Ink illustration
 - Techniques: cross-hatching, outlines, line art, etc.
- Painterly rendering
 - Styles: impressionist, expressionist, pointillist, etc.
- Cartoons
 - Effects: cartoon shading, distortion, etc.
- Technical illustrations
 - Characteristics: Matte shading, edge lines, etc.
- Scientific visualization
 - Methods: splatting, hedgehogs, etc.

Outline

- Pen-and-Ink Illustrations
- Painterly Rendering
- Cartoon Shading
- Technical Illustrations
Hue
- Perception of “distinct” colors by humans
- Red
- Blue

![Hue Scale](Source: Wikipedia)

Tone
- Perception of “brightness” of a color by humans
- Also called lightness
- Important in NPR

![Tone Scale](Source: Wikipedia)

Pen-and-Ink Illustrations
Winkenbach and Salesin 1994

- Strokes
 - Curved lines of varying thickness and density
- Texture
 - Conveyed by collection of strokes
- Tone
 - Perceived gray level across image or segment
- Outline
 - Boundary lines that disambiguate structure

![Pen-and-Ink Illustrations](Source: Winkenbach and Salesin 1994)

Rendering Pipeline: Polygonal Surfaces with NPR

- Stroke generated by moving along straight path
- Stroke perturbed by
 - Waviness function (straightness)
 - Pressure function (thickness)
- Collected in stroke textures
 - Tone dependent
 - Resolution dependent
 - Orientation dependent
- How automatic are stroke textures?
Stroke Texture Examples

Winkenbach and Salesin 1994

Stroke Texture Operations

Scaling

Changing Viewing Direction (Anisotropic)

Indication

• Selective addition of detail
• Difficult to automate
• User places detail segments interactively

Indication Example

Input without detail

With indication

Without indication

Outlines

• Boundary or interior outlines
• Accented outlines for shadowing and relief
• Dependence on viewing direction
• Suggest shadow direction

Rendering Parametric Surfaces

• Stroke orientation and density
 – Place strokes along isoparametric lines
 – Choose density for desired tone
 – tone = spacing / width

\[u \]
Parametric Surface Example

Winkenbach and Salesin 1996

Hatching + standard rendering

Constant-density hatching
Longer smoother strokes for glass
Varying reflection coefficient

Smooth shading with single light
Environment mapping

Standard rendering techniques are still important!

Orientable Textures

- Inputs
 - Grayscale image to specify desired tone
 - Direction field
 - Stroke character
- Output
 - Stroke shaded image

Salisbury et al. 1997

Outline

- Pen-and-Ink Illustrations
- Painterly Rendering
- Cartoon Shading
- Technical Illustrations

Painterly Rendering

- Physical simulation
 - User applies brushstrokes
 - Computer simulates media (paper + ink)
- Automatic painting
 - User provides input image or 3D model
 - User specifies painting parameters
 - Computer generates all strokes
Physical Simulation Example

Curtis et al. 1997, Computer Generated Watercolor

Computer-Generated Watercolor

- Complex physical phenomena for artistic effect
- Build simple approximations
- Paper generation as random height field
- Simulated effects

Fluid Dynamic Simulation

- Use water velocity, viscosity, drag, pressure, pigment concentration, paper gradient
- Paper saturation and capacity
- Discretize and use cellular automata

Interactive Painting

User input
Simulation in progress
Finished painting

Automatic Painting Example

Hertzmann 1997

Automatic Painting from Images

- Start from color image: no 3D information
- Paint in resolution-based layers
 - Blur to current resolution
 - Select brush based on current resolution
 - Find area of largest error compared to real image
 - Place stroke
 - Increase resolution and repeat
- Layers are painted coarse-to-fine
- Styles controlled by parameters
Layered Painting

- Blurring
- Adding detail with smaller strokes

Painting Styles

- Style determined by parameters
 - Approximation thresholds
 - Brush sizes
 - Curvature filter
 - Blur factor
 - Minimum and maximum stroke lengths
 - Opacity
 - Grid size
 - Color jitter
- Encapsulate parameter settings as style

Style Examples

- "Impressionist"
 - No random color, 4 ≤ stroke length ≤ 16
 - Brush sizes 8, 4, 2; approximation threshold 100
- "Expressionist"
 - Random factor 0.5, 10 ≤ stroke length ≤ 16
 - Brush sizes 8, 4, 2; approximation threshold 50
- "Pointilist"
 - Random factor ~0.75, 0 ≤ stroke length ≤ 0
 - Brush sizes 4, 2; approximation threshold 100
 - Not completely convincing to artists (yet?)

Outline

- Pen-and-Ink Illustrations
- Painterly Rendering
- Cartoon Shading
- Technical Illustrations

Cartoon Shading

- Shading model in 2D cartoons
 - Use material color and shadow color
 - Present lighting cues, shape, and context
- Stylistic
- Used in many animated movies
- Real-time techniques for games
Cartoon Shading as Texture Map
- Apply shading as 1D texture map
- Two-pass technique:
 - Pass 1: standard shader
 - Pass 2: use result from 1 as texture coordinates

Shading Variations
- Gouraud
- 1 texel: flat shading
- 2 texels: shadow
- 8 texels: shadow + highlight

Outline
- Pen-and-Ink Illustrations
- Painterly Rendering
- Cartoon Shading
- Technical Illustrations

Technical Illustrations
- Level of abstraction
 - Accent important 3D properties
 - Diminish or eliminate extraneous details
 - Do not represent reality
 - Photo
 - Ruppel 1995

Conventions in Technical Illustrations
- Black edge lines
- Cool to warm shading colors
- Single light source; shadows rarely used

Technical Illustration Example
- Phong shading
- Metal shading (anisotropic)
- Edge lines
- Gooch shading (cool to warm shift gives better depth perception)
 - Source: Bruce Gooch
The Future

- Smart graphics
 - Design from the user’s perspective
 - HCI, AI, Perception
- Artistic graphics
 - More tools for the creative artist
 - New styles and ideas

Summary

- Beyond photorealism
 - Artistic appeal
 - Technical explanation and illustration
 - Scientific visualization
- Use all traditional computer graphics tools
- Employ them in novel ways
- Have fun!