Geometric Queries for Ray Tracing

Ray-Surface Intersection
Barycentric Coordinates
[Angel Ch. 11]
Ray-Surface Intersections

- Necessary in ray tracing
- General implicit surfaces
- General parametric surfaces
- Specialized analysis for special surfaces
 - Spheres
 - Planes
 - Polygons
 - Quadrics
Intersection of Rays and Parametric Surfaces

• Ray in parametric form
 – Origin \(p_0 = [x_0, y_0, z_0]^T \)
 – Direction \(d = [x_d, y_d, z_d]^T \)
 – Assume \(d \) is normalized \((x_d^2 + y_d^2 + z_d^2 = 1) \)
 – Ray \(p(t) = p_0 + d \ t \) for \(t > 0 \)

• Surface in parametric form
 – Point \(q = g(u, v) \), possible bounds on \(u, v \)
 – Solve \(p_0 + d \ t = g(u, v) \)
 – Three equations in three unknowns \((t, u, v) \)
Intersection of Rays and Implicit Surfaces

• Ray in parametric form
 – Origin \(p_0 = [x_0 \ y_0 \ z_0]^T \)
 – Direction \(d = [x_d \ y_d \ z_d]^T \)
 – Assume \(d \) normalized (\(x_d^2 + y_d^2 + z_d^2 = 1 \))
 – Ray \(p(t) = p_0 + d \ t \) for \(t > 0 \)

• Implicit surface
 – Given by \(f(q) = 0 \)
 – Consists of all points \(q \) such that \(f(q) = 0 \)
 – Substitute ray equation for \(q \): \(f(p_0 + d \ t) = 0 \)
 – Solve for \(t \) (univariate root finding)
 – Closed form (if possible), otherwise numerical approximation
Ray-Sphere Intersection I

- Common and easy case
- Define sphere by
 - Center \(\mathbf{c} = [x_c, y_c, z_c]^T \)
 - Radius \(r \)
 - Surface \(f(q) = (x - x_c)^2 + (y - y_c)^2 + (z - z_c)^2 - r^2 = 0 \)
- Plug in ray equations for \(x, y, z \):
 \[
 x = x_0 + x_d t, \quad y = y_0 + y_d t, \quad z = z_0 + z_d t
 \]
- And we obtain a scalar equation for \(t \):
 \[
 (x_0 + x_d t - x_c)^2 + (y_0 + y_d t - y_c)^2 + (z_0 + z_d t - z_c)^2 = r^2
 \]
Ray-Sphere Intersection II

- Simplify to

\[at^2 + bt + c = 0 \]

where

\[
\begin{align*}
 a &= x_d^2 + y_d^2 + z_d^2 = 1 & \text{since } |d| = 1 \\
 b &= 2(x_d(x_0 - x_c) + y_d(y_0 - y_c) + z_d(z_0 - z_c)) \\
 c &= (x_0 - x_c)^2 + (y_0 - y_c)^2 + (z_0 - z_c)^2 - r^2
\end{align*}
\]

- Solve to obtain \(t_0 \) and \(t_1 \)

\[
 t_{0,1} = \frac{-b \pm \sqrt{b^2 - 4c}}{2}
\]

Check if \(t_0, t_1 > 0 \) (ray)
Return \(\min(t_0, t_1) \)
Ray-Sphere Intersection III

• For lighting, calculate unit normal

\[n = \frac{1}{r} [(x_i - x_c) \ (y_i - y_c) \ (z_i - z_c)]^T \]

• Negate if ray originates inside the sphere!
• Note possible problems with roundoff errors
Simple Optimizations

- Factor common subexpressions

- Compute only what is necessary
 - Calculate $b^2 - 4c$, abort if negative
 - Compute normal only for closest intersection
 - Other similar optimizations
Ray-Quadric Intersection

- Quadric $f(p) = f(x, y, z) = 0$, where f is polynomial of order 2
- Sphere, ellipsoid, paraboloid, hyperboloid, cone, cylinder
- Closed form solution as for sphere
- Important case for modelling in ray tracing
- Combine with CSG
Ray-Polygon Intersection I

- Assume planar polygon in 3D
 1. Intersect ray with plane containing polygon
 2. Check if intersection point is inside polygon

- Plane
 - Implicit form: $ax + by + cz + d = 0$
 - Unit normal: $\mathbf{n} = [a \ b \ c]^T$ with $a^2 + b^2 + c^2 = 1$

- Substitute:
 $$a(x_0 + x_d t) + b(y_0 + y_d t) + c(z_0 + z_d t) + d = 0$$

- Solve:
 $$t = \frac{-(ax_0 + by_0 + cz_0 + d)}{ax_d + by_d + cz_d}$$
Ray-Polygon Intersection II

- Substitute t to obtain intersection point in plane.

- Rewrite using dot product.

$$t = \frac{-(ax_0 + by_0 + cz_0 + d)}{ax_d + by_d + cz_d} = \frac{-(n \cdot p_0 + d)}{n \cdot d}$$

- If $n \cdot d = 0$, no intersection (ray parallel to plane).

- If $t \leq 0$, the intersection is behind ray origin.
Test if point inside polygon

- Use even-odd rule or winding rule

- Easier if polygon is in 2D (project from 3D to 2D)

- Easier for triangles (tessellate polygons)
Point-in-triangle testing

• Critical for polygonal models

• Project the triangle, and point of plane intersection, onto one of the planes $x = 0$, $y = 0$, or $z = 0$
 (pick a plane not perpendicular to triangle)
 (such a choice always exists)

• Then, do the 2D test in the plane, by computing barycentric coordinates
 (follows next)
Outline

• Ray-Surface Intersections
• Special cases: sphere, polygon
• Barycentric Coordinates
Interpolated Shading for Ray Tracing

- Assume we know normals at vertices
- How do we compute normal of interior point?
- Need linear interpolation between 3 points
- Barycentric coordinates
- Yields same answer as scan conversion
Barycentric Coordinates in 1D

• Linear interpolation
 – \(p(t) = (1 - t)p_1 + t \ p_2, \ 0 \leq t \leq 1 \)
 – \(p(t) = \alpha \ p_1 + \beta \ p_2 \) where \(\alpha + \beta = 1 \)
 – \(p \) is between \(p_1 \) and \(p_2 \) iff \(0 \leq \alpha, \ \beta \leq 1 \)

• Geometric intuition
 – Weigh each vertex by ratio of distances from ends

\[\begin{array}{c}
 p_1 \quad p \quad p_2 \\
 \quad p_2
\end{array} \]

• \(\alpha, \ \beta \) are called barycentric coordinates
Barycentric Coordinates in 2D

- Now, we have 3 points instead of 2
- Define 3 barycentric coordinates, α, β, γ
- $\mathbf{p} = \alpha \mathbf{p}_1 + \beta \mathbf{p}_2 + \gamma \mathbf{p}_3$
- \mathbf{p} inside triangle iff $0 \leq \alpha, \beta, \gamma \leq 1$, $\alpha + \beta + \gamma = 1$
- How do we calculate α, β, γ given \mathbf{p}?
Barycentric Coordinates for Triangle

- Coordinates are ratios of triangle areas

\[
\alpha = \frac{\text{Area}(\text{CC}_1\text{C}_2)}{\text{Area}(\text{C}_0\text{C}_1\text{C}_2)}
\]

\[
\beta = \frac{\text{Area}(\text{C}_0\text{CC}_2)}{\text{Area}(\text{C}_0\text{C}_1\text{C}_2)}
\]

\[
\gamma = \frac{\text{Area}(\text{C}_0\text{C}_1\text{C})}{\text{Area}(\text{C}_0\text{C}_1\text{C}_2)} = 1 - \alpha - \beta
\]

- Areas in these formulas should be signed, depending on clockwise (-) or anti-clockwise orientation (+) of the triangle! Very important for point-in-triangle test.
Computing Triangle Area in 3D

• Use cross product
• Parallelogram formula
• Area(ABC) = (1/2) |(B – A) x (C – A)|
• How to get correct sign for barycentric coordinates?
 – tricky, but possible:
 compare directions of vectors (B – A) x (C – A), for
 triangles C\textsubscript{1}C\textsubscript{2}C\textsubscript{3} vs C\textsubscript{0}C\textsubscript{1}C\textsubscript{2}, etc.
 (either 0 (sign+) or 180 deg (sign-) angle)
 – easier alternative: project to 2D, use 2D formula
 – projection to 2D preserves barycentric coordinates
Computing Triangle Area in 2D

• Suppose we project the triangle to xy plane

• Area(xy-projection(ABC)) =

\[
\frac{1}{2} \left((b_x - a_x)(c_y - a_y) - (c_x - a_x)(b_y - a_y) \right)
\]

• This formula gives correct sign (important for barycentric coordinates)
Summary

- Ray-Surface Intersections
- Special cases: sphere, polygon
- Barycentric Coordinates