Rasterization (scan conversion)

- Final step in pipeline: rasterization
- From screen coordinates (float) to pixels (int)
- Writing pixels into frame buffer
- Separate buffers:
 - depth (z-buffer),
 - display (frame buffer),
 - shadows (stencil buffer),
 - blending (accumulation buffer)

Rasterizing a line

Digital Differential Analyzer (DDA)

- Represent line as
 \[y = mx + b \]
 where \[m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x} \]

- Then, if \(\Delta x = 1 \) pixel,
 we have \(\Delta y = m \Delta x = m \)

Digital Differential Analyzer

- Assume write_pixel(int x, int y, int value)
 for (i = x1; i <= x2; i++)
 {
 y += m;
 write_pixel(i, round(y), color);
 }
- Problems:
 - Requires floating point addition
 - Missing pixels with steep slopes: slope restriction needed

But still requires floating point additions!
Bresenham's Algorithm I

• Eliminate floating point addition from DDA
• Assume again $0 \leq m \leq 1$
• Assume pixel centers halfway between integers

Bresenham's Algorithm II

• Decision variable $a - b$
 – If $a - b > 0$ choose lower pixel
 – If $a - b \leq 0$ choose higher pixel
• Goal: avoid explicit computation of $a - b$
• Step 1: re-scale $d = (x_2 - x_1)(a - b) = \Delta x(a - b)$
• d is always integer

Bresenham's Algorithm III

• Compute d at step $k + 1$ from d at step k!
• Case: j did not change ($d_k > 0$)
 – a decreases by m, b increases by m
 – $(a - b)$ decreases by $2m = 2(\Delta y/\Delta x)$
 – $\Delta x(a-b)$ decreases by $2\Delta y$

Bresenham's Algorithm IV

• Case: j did change ($d_k \leq 0$)
 – a decreases by $m-1$, b increases by $m-1$
 – $(a - b)$ decreases by $2m - 2 = 2(\Delta y/\Delta x - 1)$
 – $\Delta x(a-b)$ decreases by $2(\Delta y - \Delta x)$

Bresenham's Algorithm V

• So $d_{k+1} = d_k - 2\Delta y$ if $d_k > 0$
• And $d_{k+1} = d_k - 2(\Delta y - \Delta x)$ if $d_k \leq 0$
• Final (efficient) implementation:

```c
void draw_line(int x1, int y1, int x2, int y2) {
    int x, y = y1;
    int dx = 2*(x2-x1), dy = 2*(y2-y1);
    int dydx = dy-dx, D = (dy-dx)/2;
    for (x = x1 ; x <= x2 ; x++) {
        write_pixel(x, y, color);
        if (D > 0) D -= dy;
        else {y++; D -= dydx;}
    }
}
```

Bresenham's Algorithm VI

• Need different cases to handle $m > 1$
• Highly efficient
• Easy to implement in hardware and software
• Widely used
Outline

• Scan Conversion for Lines
• Scan Conversion for Polygons
• Antialiasing

Scan Conversion of Polygons

• Multiple tasks:
 – Filling polygon (inside/outside)
 – Pixel shading (color interpolation)
 – Blending (accumulation, not just writing)
 – Depth values (z-buffer hidden-surface removal)
 – Texture coordinate interpolation (texture mapping)
• Hardware efficiency is critical
• Many algorithms for filling (inside/outside)
• Much fewer that handle all tasks well

Filling Convex Polygons

• Find top and bottom vertices
• List edges along left and right sides
• For each scan line from bottom to top
 – Find left and right endpoints of span, \(x_l \) and \(x_r \)
 – Fill pixels between \(x_l \) and \(x_r \)
 – Can use Bresenham’s algorithm to update \(x_l \) and \(x_r \)

Concave Polygons: Odd-Even Test

• Approach 1: odd-even test
• For each scan line
 – Find all scan line/polygon intersections
 – Sort them left to right
 – Fill the interior spans between intersections
• Parity rule: inside after an odd number of crossings

Concave Polygons: Tessellation

• Approach 2: divide non-convex, non-flat, or non-simple polygons into triangles
• OpenGL specification
 – Need accept only simple, flat, convex polygons
 – Tessellate explicitly with tessellator objects
 – Implicitly if you are lucky
• Most modern GPUs scan-convert only triangles
Flood Fill
- Draw outline of polygon
- Pick color seed
- Color surrounding pixels and recurse
- Must be able to test boundary and duplication
- More appropriate for drawing than rendering

Outline
- Scan Conversion for Lines
- Scan Conversion for Polygons
- Antialiasing

Aliasing
- Artifacts created during scan conversion
- Inevitable (going from continuous to discrete)
- Aliasing (name from digital signal processing): we sample a continues image at grid points
- Effect
 - Jagged edges
 - Moire patterns

More Aliasing

Antialiasing for Line Segments
- Use area averaging at boundary

(c) is aliased, magnified
(d) is antialiased, magnified

Antialiasing by Supersampling
- Mostly for off-line rendering (e.g., ray tracing)
- Render, say, 3x3 grid of mini-pixels
- Average results using a filter
- Can be done adaptively
 - Stop if colors are similar
 - Subdivide at discontinuities
Supersampling Example

- Other improvements
 - Stochastic sampling: avoid sample position repetitions
 - Stratified sampling (jittering): perturb a regular grid of samples

Temporal Aliasing

- Sampling rate is frame rate (30 Hz for video)
- Example: spokes of wagon wheel in movies
- Solution: supersample in time and average
 - Fast-moving objects are blurred
 - Happens automatically with real hardware (photo and video cameras)
 - Exposure time is important (shutter speed)
 - Effect is called motion blur

Wagon Wheel Effect

Motion Blur Example

Achieve by stochastic sampling in time

T. Porter, Pixar, 1984
16 samples / pixel / timestep

Summary

- Scan Conversion for Polygons
 - Basic scan line algorithm
 - Convex vs concave
 - Odd-even rules, tessellation

- Antialiasing (spatial and temporal)
 - Area averaging
 - Supersampling
 - Stochastic sampling