Transformations

Vector Spaces
Euclidean Spaces
Frames
Homogeneous Coordinates
Transformation Matrices
[Angel, Ch. 3]

OpenGL Transformations

OpenGL Transformation Matrices
• Model-view matrix (4x4 matrix)
• Projection matrix (4x4 matrix)

4x4 Model-view Matrix (this lecture)
• Translate, rotate, scale objects
• Position the camera

4x4 Projection Matrix (next lecture)
• Project from 3D to 2D

OpenGL Transformation Matrices
• Manipulated separately in OpenGL
• Core profile: set them directly
• Compatibility profile: must set matrix mode
 glMatrixMode (GL_MODELVIEW);
 glMatrixMode (GL_PROJECTION);
Setting the Model-view Matrix: Core Profile

- Set identity:
  ```
  openGLMatrix->SetMatrixMode(OpenGLMatrix::ModelView);
  openGLMatrix->LoadIdentity();
  ```

- Use our openGLMatrix library functions:
  ```
  openGLMatrix->Translate(dx, dy, dz);
  openGLMatrix->Rotate(angle, vx, vy, vz);
  openGLMatrix->Scale(sx, sy, sz);
  ```

- Upload m to the GPU:
  ```
  float m[16]; // column-major
  openGLMatrix->GetMatrix(m);
  glUniformMatrix4fv(h_modelViewMatrix, 1, GL_FALSE, m);
  ```

Setting the Model-view Matrix: Compatibility Profile

- Load or post-multiply
  ```
  glMatrixMode(GL_MODELVIEW);
  glLoadIdentity(); // very common usage
  ```

- Use library functions
  ```
  glTranslatef(dx, dy, dz);
  glRotatef(angle, vx, vy, vz);
  glScalef(sx, sy, sz);
  ```

Translated, rotated, scaled object

The rendering coordinate system

Initially (afterLoadIdentity()):
rendering coordinate system = world coordinate system

The rendering coordinate system

Translate(x, y, z);

The rendering coordinate system

Rotate(angle, ax, ay, az);
The rendering coordinate system

Scale(sx, sy, sz);

OpenGL pseudo-code

MatrixMode(ModelView);
LoadIdentity();
Translate(x, y, z);
Rotate(angle, ax, ay, az);
Scale(sx, sy, sz);
glUniformMatrix4fv(...);
renderBunny();

Rendering more objects

How to obtain this frame?

Solution 1:
Find Translate(...), Rotate(...), Scale(...)

Solution 2:
LoadIdentity();
Find Translate(...), Rotate(...), Scale(...)

3D Math Review
Scalars
- Scalars \(\alpha, \beta, \gamma \) from a scalar field
- Operations \(\alpha + \beta, \alpha \cdot \beta, 0, 1, -\alpha \)
- “Expected” laws apply
- Examples: rationals or reals with addition and multiplication

Vectors
- Vectors \(u, v, w \) from a vector space
- Vector addition \(u + v \), subtraction \(u - v \)
- Zero vector \(0 \)
- Scalar multiplication \(\alpha v \)

Euclidean Space
- Vector space over real numbers
- Three-dimensional in computer graphics
- Dot product: \(\alpha = u \cdot v = u_1 v_1 + u_2 v_2 + u_3 v_3 \)
- \(0 \cdot 0 = 0 \)
- \(u, v \) are orthogonal if \(u \cdot v = 0 \)
- \(|v|^2 = v \cdot v \) defines \(|v| \), the length of \(v \)

Lines and Line Segments
- Parametric form of line: \(P(\alpha) = P_0 + \alpha d \)
- Line segment between \(Q \) and \(R \):
 \[P(\alpha) = (1-\alpha)Q + \alpha R \text{ for } 0 \leq \alpha \leq 1 \]

Convex Hull
- Convex hull defined by
 \[P = \alpha_1 P_1 + \ldots + \alpha_n P_n \]
 for \(\alpha_1 + \ldots + \alpha_n = 1 \)
 and \(0 \leq \alpha_i \leq 1, i = 1, \ldots, n \)

Projection
- Dot product projects one vector onto another vector
 \[u \cdot v = u_1 v_1 + u_2 v_2 + u_3 v_3 = |u| |v| \cos(\theta) \]
 \[pr = u (u \cdot v) v / |v|^2 \]
Cross Product
\[
\begin{bmatrix}
a_1 \\
a_2 \\
a_3
\end{bmatrix} \times \begin{bmatrix}
b_1 \\
b_2 \\
b_3
\end{bmatrix} = \begin{bmatrix}
a_2b_3 - a_3b_2 \\
a_3b_1 - a_1b_3 \\
a_1b_2 - a_2b_1
\end{bmatrix}
\]
- \[|a \times b| = |a| |b| \sin(\theta)\]
- Cross product is perpendicular to both \(a\) and \(b\)
- Right-hand rule

Plane
- Plane defined by point \(P_0\) and vectors \(u\) and \(v\)
- \(u\) and \(v\) should not be parallel
- Parametric form:
 \[T(\alpha, \beta) = P_0 + \alpha u + \beta v\]
 \((\alpha\) and \(\beta\) are scalars)
- \(n = u \times v / |u \times v|\) is the normal
- \(n \cdot (P - P_0) = 0\) if and only if \(P\) lies in plane

Coordinate Systems
- Let \(v_1, v_2, v_3\) be three linearly independent vectors in a 3-dimensional vector space
- Can write any vector \(w\) as
 \[w = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3\]
 for some scalars \(\alpha_1, \alpha_2, \alpha_3\)

Frames
- Frame = origin \(P_0\) + coordinate system
- Any point \(P = P_0 + \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3\)

In Practice, Frames are Often Orthogonal

Change of Coordinate System
- Bases \((u_1, u_2, u_3)\) and \((v_1, v_2, v_3)\)
- Express basis vectors \(u_i\) in terms of \(v_j\)
 \[u_1 = \gamma_{11} v_1 + \gamma_{12} v_2 + \gamma_{13} v_3\]
 \[u_2 = \gamma_{21} v_1 + \gamma_{22} v_2 + \gamma_{23} v_3\]
 \[u_3 = \gamma_{31} v_1 + \gamma_{32} v_2 + \gamma_{33} v_3\]
- Represent in matrix form:
 \[
 \begin{bmatrix}
u_1 \\
u_2 \\
u_3
 \end{bmatrix} = M \begin{bmatrix}
v_1 \\
v_2 \\
v_3
 \end{bmatrix}
 \]
 \[
 M = \begin{bmatrix}
 \gamma_{11} & \gamma_{12} & \gamma_{13} \\
 \gamma_{21} & \gamma_{22} & \gamma_{23} \\
 \gamma_{31} & \gamma_{32} & \gamma_{33}
 \end{bmatrix}
 \]
Representing 3D transformations (and model-view matrices)

Linear Transformations
- 3 x 3 matrices represent linear transformations
 \(\mathbf{a} = \mathbf{Mb} \)
- Can represent rotation, scaling, and reflection
- Cannot represent translation

\[M = \begin{bmatrix} \gamma_{11} & \gamma_{12} & \gamma_{13} \\ \gamma_{21} & \gamma_{22} & \gamma_{23} \\ \gamma_{31} & \gamma_{32} & \gamma_{33} \end{bmatrix} \]

In order to represent rotations, scales AND translations:
Homogeneous Coordinates
- Augment \([\alpha_1 \, \alpha_2 \, \alpha_3 \, 1]^T\) by adding a fourth component (1):
 \(\mathbf{p} = [\alpha_1 \, \alpha_2 \, \alpha_3 \, 1]^T \)
- Homogeneous property:
 \(\mathbf{p} = [\alpha_1 \, \alpha_2 \, \alpha_3 \, 1]^T = [\beta \alpha_1 \, \beta \alpha_2 \, \beta \alpha_3 \, \beta]^T, \) for any scalar \(\beta \neq 0 \)

Homogeneous coordinates are transformed by 4x4 matrices

Affine Transformations (4x4 matrices)
- Translation
- Rotation
- Scaling
- Any composition of the above
- Later: projective (perspective) transformations
 - Also expressible as 4 x 4 matrices!

Translation
- \(\mathbf{q} = \mathbf{p} + \mathbf{d} \) where \(\mathbf{d} = [\alpha_x \, \alpha_y \, \alpha_z \, 0]^T \)
- \(\mathbf{p} = [x \, y \, z \, 1]^T \)
- \(\mathbf{q} = [x' \, y' \, z' \, 1]^T \)
- Express in matrix form \(\mathbf{q} = \mathbf{T} \mathbf{p} \) and solve for \(\mathbf{T} \)

\[\mathbf{T} = \begin{bmatrix} 1 & 0 & 0 & \alpha_x \\ 0 & 1 & 0 & \alpha_y \\ 0 & 0 & 1 & \alpha_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \]
Scaling
- \(x' = \beta x \)
- \(y' = \beta y \)
- \(z' = \beta z \)
- Express as \(q = S p \) and solve for \(S \)

\[
S = \begin{bmatrix}
\beta_x & 0 & 0 & 0 \\
0 & \beta_y & 0 & 0 \\
0 & 0 & \beta_z & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

Rotation in 2 Dimensions
- Rotation by \(\theta \) about the origin
 - \(x' = x \cos \theta - y \sin \theta \)
 - \(y' = x \sin \theta + y \cos \theta \)
- Express in matrix form:

\[
\begin{bmatrix}
x' \\
y'
\end{bmatrix} = \begin{bmatrix}
\cos(\theta) & -\sin(\theta) \\
\sin(\theta) & \cos(\theta)
\end{bmatrix} \begin{bmatrix}
x \\
y
\end{bmatrix}
\]
- Note that the determinant is 1

Rotation in 3 Dimensions
- Orthogonal matrices:
 - \(RR^T = R^TR = I \)
 - \(\det(R) = 1 \)
- Affine transformation:

\[
A = \begin{bmatrix}
R_{11} & R_{12} & R_{13} & 0 \\
R_{21} & R_{22} & R_{23} & 0 \\
R_{31} & R_{32} & R_{33} & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

Affine Matrices are Composed by Matrix Multiplication
- \(A = A_3 A_2 A_1 \)
- Applied from right to left

\[
A \ p = (A_3 A_2 A_1) \ p = A_1 (A_2 (A_3 p))
\]
- When calling glTranslate3f, glRotatef, or glScalef, OpenGL forms the corresponding 4x4 matrix, and multiplies the current modelview matrix with it.

Summary
- OpenGL Transformation Matrices
- Vector Spaces
- Frames
- Homogeneous Coordinates
- Transformation Matrices