Goals of Computer Graphics:

- Traditional: Photorealism
- Sometimes, we want more
 - Cartoons
 - Artistic expression in paint, pen-and-ink
 - Technical illustrations
 - Scientific visualization
 [Lecture next week]
Hue
- Perception of “distinct” colors by humans
 - Red
 - Green
 - Blue
 - Yellow

Tone
- Perception of “brightness” of a color by humans
 - Also called lightness
 - Important in NPR

Pen-and-Ink Illustrations

Winkenbach and Salesin 1994

Pen-and-Ink Illustrations
- Strokes
 - Curved lines of varying thickness and density
- Texture
 - Conveyed by collection of strokes
- Tone
 - Perceived gray level across image or segment
- Outline
 - Boundary lines that disambiguate structure

Winkenbach and Salesin 1994

Rendering Pipeline: Polygonal Surfaces with NPR

3D Model → Lighting → Visible Polygons → Procedural Stroke Texture → Stroke Clipping → Outline Drawing

How much 3D information do we preserve?

Strokes and Stroke Textures
- Stroke generated by moving along straight path
- Stroke perturbed by
 - Waviness function (straightness)
 - Pressure function (thickness)
- Collected in stroke textures
 - Tone dependent
 - Resolution dependent
 - Orientation dependent
- How automatic are stroke textures?
Stroke Texture Examples

Stroke Texture Operations

Indication
- Selective addition of detail
- Difficult to automate
- User places detail segments interactively

Indication Example

Outlines
- Boundary or interior outlines
- Accented outlines for shadowing and relief
- Dependence on viewing direction
- Suggest shadow direction

Rendering Parametric Surfaces
- Stroke orientation and density
 - Place strokes along isoparametric lines
 - Choose density for desired tone
 - tone = spacing / width
Parametric Surface Example

Winkenbach and Salesin 1996

Hatching + standard rendering

Constant-density hatching

Longer smoother strokes for glass

Varying reflection coefficient

Smooth shading with single light

Environment mapping

Standard rendering techniques are still important!

Orientable Textures

• Inputs
 – Grayscale image to specify desired tone
 – Direction field
 – Stroke character

• Output
 – Stroke shaded image

Salisbury et al. 1997

Orientable Stroke Texture Example

Salisbury et al. 1997

Outline

• Pen-and-Ink Illustrations
• Painterly Rendering
• Cartoon Shading
• Technical Illustrations

Painterly Rendering

• Physical simulation
 – User applies brushstrokes
 – Computer simulates media (paper + ink)

• Automatic painting
 – User provides input image or 3D model
 – User specifies painting parameters
 – Computer generates all strokes
Physical Simulation Example

Curtis et al. 1997, Computer Generated Watercolor

Computer-Generated Watercolor

- Complex physical phenomena for artistic effect
- Build simple approximations
- Paper generation as random height field
- Simulated effects

Fluid Dynamic Simulation

- Use water velocity, viscosity, drag, pressure, pigment concentration, paper gradient
- Paper saturation and capacity
- Discretize and use cellular automata

Interactive Painting

User input

Simulation in progress

Finished painting

Automatic Painting Example

Hertzmann 1997

Automatic Painting from Images

- Start from color image: no 3D information
- Paint in resolution-based layers
 - Blur to current resolution
 - Select brush based on current resolution
 - Find area of largest error compared to real image
 - Place stroke
 - Increase resolution and repeat
- Layers are painted coarse-to-fine
- Styles controlled by parameters
Layered Painting

Blurring

Adding detail with smaller strokes

Adding detail with smaller strokes

Painting Styles

- Style determined by parameters
 - Approximation thresholds
 - Brush sizes
 - Curvature filter
 - Blur factor
 - Minimum and maximum stroke lengths
 - Opacity
 - Grid size
 - Color jitter
- Encapsulate parameter settings as style

Style Examples

Source image

"Impressionist"

"Expressionist"

"Pointillist"

Some Styles

- "Impressionist"
 - No random color, 4 ≤ stroke length ≤ 16
 - Brush sizes 8, 4, 2; approximation threshold 100
- "Expressionist"
 - Random factor 0.5, 10 ≤ stroke length ≤ 16
 - Brush sizes 8, 4, 2; approximation threshold 50
- "Pointillist"
 - Random factor ~0.75, 0 ≤ stroke length ≤ 0
 - Brush sizes 4, 2; approximation threshold 100
- Not completely convincing to artists (yet?)

Outline

- Pen-and-Ink Illustrations
- Painterly Rendering
- Cartoon Shading
- Technical Illustrations

Cartoon Shading

- Shading model in 2D cartoons
 - Use material color and shadow color
 - Present lighting cues, shape, and context
- Stylistic
- Used in many animated movies
- Real-time techniques for games
Cartoon Shading as Texture Map

- Apply shading as 1D texture map
- Two-pass technique:
 Pass 1: standard shader
 Pass 2: use result from 1 as texture coordinates

Shading Variations

Gouraud
1 texel
Flat shading
2 texels
Shadow
8 texels
Shadow + highlight

Outline

- Pen-and-Ink Illustrations
- Painterly Rendering
- Cartoon Shading
- Technical Illustrations

Technical Illustrations

- Level of abstraction
 - Accent important 3D properties
 - Dimish or eliminate extraneous details
- Do not represent reality

Conventions in Technical Illustrations

- Black edge lines
- Cool to warm shading colors
- Single light source; shadows rarely used

Technical Illustration Example

- Phong shading
- Metal shading (anisotropic)
- Gooch shading
 (cool to warm shift gives better depth perception)

Source: Bruce Gooch
The Future

- Smart graphics
 - Design from the user’s perspective
 - HCI, AI, Perception
- Artistic graphics
 - More tools for the creative artist
 - New styles and ideas

Summary

- Beyond photorealism
 - Artistic appeal
 - Technical explanation and illustration
 - Scientific visualization
- Use all traditional computer graphics tools
- Employ them in novel ways
- Have fun!