Image Processing

- Blending
- Display Color Models
- Filters
- Dithering

[Ch 7.13, 8.11-8.12]

Alpha Channel

- Frame buffer
 - Simple color model: R, G, B; 8 bits each
 - α-channel A, another 8 bits
- Alpha determines opacity, pixel-by-pixel
 - α = 1: opaque
 - α = 0: transparent

![Checkerboard pattern = opacity](source: Wikipedia)

Blending

- Blend transparent objects during rendering
- Achieve other effects (e.g., shadows)

![Opaque A and B](source: Wikipedia)

![Partially-transparent A and B](source: Wikipedia)

Blending in OpenGL

- Enable blending
 - glEnable(GL_BLEND);
- Set up source and destination factors
 - glBlendFunc(source_factor, dest_factor);
- Source and destination choices
 - GL_ONE, GL_ZERO
 - GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA
 - GL_DST_ALPHA, GL_ONE_MINUS_DST_ALPHA
- Set alpha values: 4th parameter to
 - glColor4f(r, g, b, alpha)
 - glLightfv, glMaterialfv

Blending Errors

- Operations are not commutative
 - rendering order changes result
- Operations are not idempotent
 - render same object twice gives different result to rendering once
- Interaction with hidden-surface removal is tricky
 - Polygon behind opaque polygon(s) should be culled
 - Transparent in front of others should be composited
 - Solution: make z-buffer read-only for transparent polygons with
 glDepthMask(GL_FALSE);
Displays and Framebuffers
- Image stored in memory as 2D pixel array, called framebuffer
- Value of each pixel controls color
- Video hardware scans the framebuffer at 60Hz
- Depth of framebuffer is information per pixel
 - 1 bit: black and white display
 - 8 bit: 256 colors at any given time via colormap
 - 16 bit: 5, 6, 5 bits (R,G,B), $2^{16} = 65,536$ colors
 - 24 bit: 8, 8, 8 bits (R,G,B), $2^{24} = 16,777,216$ colors

More Bits: Graphics Hardware
- 24 bits: RGB
- + 8 bits: A (α-channel for opacity)
- + 16 bits: Z (for hidden-surface removal)
- * 2: double buffering for smooth animation
- = 96 bits
- For 1024 * 768 screen: 9 MB
- Easily possible on modern hardware

Outline
- Blending
- Display Color Models
- Filters
- Dithering

Image Processing
- 2D generalization of signal processing
- Image as a two-dimensional signal
- Point processing: modify pixels independently
- Filtering: modify based on neighborhood
- Compositing: combine several images
- Image compression: space-efficient formats
- Other topics
 - Image enhancement and restoration
 - Computer vision

Outline
- Blending
- Display Color Models
- Filters
- Dithering
Point Processing

- Process each pixel independently from others
- Input: \(a(x,y) \); Output: \(b(x,y) = f(a(x,y)) \)
- Useful for contrast adjustment, false colors
- Examples for grayscale, \(0 \leq v \leq 1 \)
 - \(f(v) = v \) (identity)
 - \(f(v) = 1-v \) (negate image)
 - \(f(v) = v^p, p < 1 \) (brighten)
 - \(f(v) = v^p, p > 1 \) (darken)

Gamma Correction

- Example of point processing
- Compensates monitor brightness nonlinearity (older monitors)

\[\begin{align*}
\Gamma &= 1.0; \quad f(v) = v \\
\Gamma &= 0.5; \quad f(v) = v^{-1} = v^{2} \quad \Gamma &= 2.5; \quad f(v) = v^{-0.4} = v^{0.4}
\end{align*} \]

Signals and Filtering

- Audio recording is 1D signal: amplitude(t)
- Image is a 2D signal: color(x,y)
- Signals can be continuous or discrete
- Raster images are discrete
 - In space: sampled in x, y
 - In color: quantized in value
- Filtering: a mapping from signal to signal

Linear and Shift-Invariant Filters

- Linear with respect to input signal
- Shift-invariant with respect to parameter
- Convolution in 1D
 - a(t) is input signal
 - b(s) is output signal
 - h(u) is filter
- Convolution in 2D
 \[b(x,y) = \sum_{u=-\infty}^{\infty} \sum_{v=-\infty}^{\infty} a(u,v) h(x-u,y-v) \]

Filters with Finite Support

- Filter \(h(u,v) \) is 0 except in given region
- Example: 3 x 3 blurring filter
 \[b(x,y) = \frac{1}{9} \left(a(x-1,y-1) + a(x,y-1) + a(x+1,y-1) + a(x-1,y) + a(x,y) + a(x+1,y) + a(x-1,y+1) + a(x,y+1) + a(x+1,y+1) \right) \]
- As function
 \[h(u,v) = \begin{cases} 1/9 & \text{if } -1 \leq u, v \leq 1 \\ 0 & \text{otherwise} \end{cases} \]
- In matrix form
 \[\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \]

Blurring Filters

- Average values of surrounding pixels
- Can be used for anti-aliasing
- Size of blurring filter should be odd
- What do we do at the edges and corners?
 - For noise reduction, use median, not average
 - Eliminates intensity spikes
 - Non-linear filter
Examples of Blurring Filter

Original Image
Blur 3x3 mask
Blur 7x7 mask

Example Noise Reduction

Original image
Image with noise
Median filter (5x5)

Edge Filters

- Task: Discover edges in image
- Characterized by large gradient
- Approximate square root
- Approximate partial derivatives, e.g.
- \(\frac{\partial a}{\partial x} \approx a(x + 1) - a(x - 1) \)

Sobel Filter

- Very popular edge detection filter
- Approximate:
- Output is \(|Va| \), computed as follows:
- Sobel filter is non-linear
 - Square and square root (more exact computation)
 - Can also use absolute value (faster computation)

Sample Filter Computation

- One part (of the two) of the Sobel filter
- Detects vertical edges

Example of Edge Filter

Original image
Edge filter, then brightened
Outline

- Blending
- Display Color Models
- Filters
- Dithering

Dithering

- Compensates for lack of color resolution
- Give up spatial resolution for color resolution
- Eye does spatial averaging

Black/White Dithering

- For gray scale images
- Each pixel is black or white
- From far away, eye perceives color by fraction of white
- For 3x3 block, 10 levels of gray scale

Color Dithering

- Dither RGB separately
- Store quantized color as a k-bit value (often k=8)

Halftoning

- Regular patterns create artifacts
 - Avoid stripes
 - Avoid isolated pixels (e.g. on laser printer)
 - Monotonicity: keep pixels on at higher intensities
 - Floyd-Steinberg dithering
- Example of good 3x3 dithering matrix
 - For intensity n, turn on pixels 0..n–1

Summary

- Display Color Models
 - 8 bit (colormap), 24 bit, 96 bit
- Filters
 - Blur, edge detect, sharpen, despeckle (noise removal)
- Dithering