Rasterization

Scan Conversion
Antialiasing
[Ch 7.8-7.11, 8.9-8.12]
Rasterization (scan conversion)

- Final step in pipeline: rasterization
- From screen coordinates (float) to pixels (int)
- Writing pixels into frame buffer
- Separate buffers:
 - depth (z-buffer),
 - display (frame buffer),
 - shadows (stencil buffer),
 - blending (accumulation buffer)
Rasterizing a line
Digital Differential Analyzer (DDA)

• Represent line as

\[y = mx + h \quad \text{where} \quad m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x} \]

• Then, if \(\Delta x = 1 \) pixel, we have \(\Delta y = m \Delta x = m \)
Digital Differential Analyzer

• Assume `write_pixel(int x, int y, int value)`

  ```
  for (i = x1; i <= x2; i++)
  {
    y += m;
    write_pixel(i, round(y), color);
  }
  ```

• Problems:
 – Requires floating point addition
 – Missing pixels with steep slopes: slope restriction needed
Digital Differential Analyzer (DDA)

- Assume $0 \leq m \leq 1$
- Exploit symmetry
- Distinguish special cases

But still requires floating point additions!
Bresenham’s Algorithm I

- Eliminate floating point addition from DDA
- Assume again $0 \leq m \leq 1$
- Assume pixel centers halfway between integers
Bresenham’s Algorithm II

- Decision variable $a - b$
 - If $a - b > 0$ choose lower pixel
 - If $a - b \leq 0$ choose higher pixel
- Goal: avoid explicit computation of $a - b$
- Step 1: re-scale $d = (x_2 - x_1)(a - b) = \Delta x(a - b)$
- d is always integer
Bresenham’s Algorithm III

- Compute \(d \) at step \(k + 1 \) from \(d \) at step \(k \! \\
- Case: \(j \) did not change (\(d_k > 0 \))
 - \(a \) decreases by \(m \), \(b \) increases by \(m \)
 - \((a - b) \) decreases by \(2m = 2(\Delta y/\Delta x) \)
 - \(\Delta x(a-b) \) decreases by \(2\Delta y \)
Bresenham’s Algorithm IV

• Case: \(j \) did change \((d_k \leq 0) \)
 – \(a \) decreases by \(m-1 \), \(b \) increases by \(m-1 \)
 – \((a – b) \) decreases by \(2m – 2 = 2(\Delta y/\Delta x – 1) \)
 – \(\Delta x(a-b) \) decreases by \(2(\Delta y - \Delta x) \)
Bresenham’s Algorithm V

- So \(d_{k+1} = d_k - 2\Delta y \) if \(d_k > 0 \)
- And \(d_{k+1} = d_k - 2(\Delta y - \Delta x) \) if \(d_k \leq 0 \)
- Final (efficient) implementation:

```c
void draw_line(int x1, int y1, int x2, int y2) {
    int x, y = y0;
    int dx = 2*(x2-x1), dy = 2*(y2-y1);
    int dydx = dy-dx, D = (dy-dx)/2;

    for (x = x1 ; x <= x2 ; x++) {
        write_pixel(x, y, color);
        if (D > 0) D -= dy;
        else {y++; D -= dydx;}
    }
}
```
Bresenham’s Algorithm VI

- Need different cases to handle $m > 1$
- Highly efficient
- Easy to implement in hardware and software
- Widely used
Outline

• Scan Conversion for Lines
• Scan Conversion for Polygons
• Antialiasing
Scan Conversion of Polygons

- Multiple tasks:
 - Filling polygon (inside/outside)
 - Pixel shading (color interpolation)
 - Blending (accumulation, not just writing)
 - Depth values (z-buffer hidden-surface removal)
 - Texture coordinate interpolation (texture mapping)

- Hardware efficiency is critical
- Many algorithms for filling (inside/outside)
- Much fewer that handle all tasks well
Filling Convex Polygons

• Find top and bottom vertices
• List edges along left and right sides
• For each scan line from bottom to top
 – Find left and right endpoints of span, x_l and x_r
 – Fill pixels between x_l and x_r
 – Can use Bresenham’s algorithm to update x_l and x_r
Concave Polygons: Odd-Even Test

• Approach 1: odd-even test
• For each scan line
 – Find all scan line/polygon intersections
 – Sort them left to right
 – Fill the interior spans between intersections
• Parity rule: inside after an odd number of crossings
Edge vs Scan Line Intersections

- Brute force: calculate intersections explicitly
- Incremental method (Bresenham’s algorithm)
- Caching intersection information
 - Edge table with edges sorted by y_{min}
 - Active edges, sorted by x-intersection, left to right
- Process image from smallest y_{min} up
Concave Polygons: Tessellation

- Approach 2: divide non-convex, non-flat, or non-simple polygons into triangles
- OpenGL specification
 - Need accept only simple, flat, convex polygons
 - Tessellate explicitly with tessellator objects
 - Implicitly if you are lucky
- Most modern GPUs scan-convert only triangles
Flood Fill

- Draw outline of polygon
- Pick color seed
- Color surrounding pixels and recurse
- Must be able to test boundary and duplication
- More appropriate for drawing than rendering
Outline

• Scan Conversion for Lines
• Scan Conversion for Polygons
• Antialiasing
Aliasing

• Artifacts created during scan conversion
• Inevitable (going from continuous to discrete)
• Aliasing (name from digital signal processing): we sample a continues image at grid points
• Effect
 – Jagged edges
 – Moire patterns

Moire pattern from sandlotscience.com
More Aliasing

No antialiasing
Antialiasing for Line Segments

• Use area averaging at boundary

(a) (b) (c) (d)

• (c) is aliased, magnified
• (d) is antialiased, magnified
Antialiasing by Supersampling

- Mostly for off-line rendering (e.g., ray tracing)
- Render, say, 3x3 grid of mini-pixels
- Average results using a filter
- Can be done adaptively
 - Stop if colors are similar
 - Subdivide at discontinuities

![Diagram of 3x3 grid of mini-pixels]

(one pixel)
Supersampling Example

- Other improvements
 - Stochastic sampling: avoid sample position repetitions
 - Stratified sampling (jittering): perturb a regular grid of samples
Temporal Aliasing

- Sampling rate is frame rate (30 Hz for video)
- Example: spokes of wagon wheel in movies
- Solution: supersample in time and average
 - Fast-moving objects are blurred
 - Happens automatically with real hardware (photo and video cameras)
 - Exposure time is important (shutter speed)
 - Effect is called motion blur
Wagon Wheel Effect

Source: YouTube
Motion Blur Example

Achieve by stochastic sampling in time

T. Porter, Pixar, 1984
16 samples / pixel / timestep
Summary

• Scan Conversion for Polygons
 – Basic scan line algorithm
 – Convex vs concave
 – Odd-even rules, tessellation

• Antialiasing (spatial and temporal)
 – Area averaging
 – Supersampling
 – Stochastic sampling