Roller coaster

Next programming assignment involves creating a 3D roller coaster animation

We must model the 3D curve describing the roller coaster, but how?

Modeling Complex Shapes

We want to build models of very complicated objects

Complexity is achieved using simple pieces

- polygons
- parametric curves and surfaces
- implicit curves and surfaces

This lecture: parametric curves

What Do We Need From Curves in Computer Graphics?

Local control of shape (so that easy to build and modify)

Stability

Smoothness and continuity

Ability to evaluate derivatives

Ease of rendering

Curve Representations

Explicit: \(y = f(x) \)

- Must be a function (single-valued)
- Big limitation—vertical lines?

Parametric: \((x,y) = (f(u),g(u))\)

- Easy to specify, modify, control
- Extra "hidden" variable \(u\), the parameter

Implicit: \(f(x,y) = 0\)

- \(y\) can be a multiple-valued function of \(x\)
- Hard to specify, modify, control

\[x^2 + y^2 - r^2 = 0\]

Parameterization of a Curve

Parameterization of a curve: how a change in \(u\) moves you along a given curve in \(xyz\) space.

Parameterization is not unique. It can be slow, fast, with continuous / discontinuous speed, clockwise (CW) or CCW...
Polynomial Interpolation

- An n-th degree polynomial fits a curve to n+1 points
 - called Lagrange Interpolation
 - result is a curve that is too wiggly, change to any control point affects entire curve (non-local)
 - this method is poor
- We usually want the curve to be as smooth as possible
 - minimize the wiggles
 - high-degree polynomials are bad

Splines: Piecewise Polynomials

- A spline is a piecewise polynomial:
 Curve is broken into consecutive segments, each of which is a low-degree polynomial interpolating (passing through) the control points
- Cubic piecewise polynomials are the most common:
 - They are the lowest order polynomials that
 1. interpolate two points and
 2. allow the gradient at each point to be defined (C1 continuity is possible).
 - Piecewise definition gives local control.
 - Higher or lower degrees are possible, of course.

Piecewise Polynomials

- Spline: many polynomials pieced together
- Want to make sure they fit together nicely

Splines

- Types of splines:
 - Hermite Splines
 - Bezier Splines
 - Catmull-Rom Splines
 - Natural Cubic Splines
 - B-Splines
 - NURBS
- Splines can be used to model both curves and surfaces

Cubic Curves in 3D

- Cubic polynomial:
 - \(p(u) = au^3 + bu^2 + cu + d \)
 - \(a, b, c, d \) are 3-vectors, \(u \) is a scalar
- Three cubic polynomials, one for each coordinate:
 - \(x(u) = a_xu^3 + b_xu^2 + c_xu + d_x \)
 - \(y(u) = a_yu^3 + b_yu^2 + c_yu + d_y \)
 - \(z(u) = a_zu^3 + b_zu^2 + c_zu + d_z \)
- In matrix notation:
 \[
 \begin{bmatrix}
 x(u) \\
 y(u) \\
 z(u)
 \end{bmatrix}
 =
 \begin{bmatrix}
 a_x & b_x & c_x & d_x \\
 a_y & b_y & c_y & d_y \\
 a_z & b_z & c_z & d_z
 \end{bmatrix}
 \begin{bmatrix}
 u^3 \\
 u^2 \\
 u \\
 1
 \end{bmatrix}
 \]
- Or simply:
 \[
 p = [u^3 \ u^2 \ u \ 1] A
 \]

Cubic Hermite Splines

We want a way to specify the end points and the slope at the end points!
Deriving Hermite Splines

• Four constraints: value and slope (in 3-D, position and tangent vector) at beginning and end of interval \([0,1]\):
 \[p(0) = p_1 = (x_1, y_1, z_1) \]
 \[p(1) = p_2 = (x_2, y_2, z_2) \]
 \[p'(0) = \overrightarrow{p_1} = (\overline{x}_1, \overline{y}_1, \overline{z}_1) \]
 \[p'(1) = \overrightarrow{p_2} = (\overline{x}_2, \overline{y}_2, \overline{z}_2) \]

• Assume cubic form: \(p(u) = au^3 + bu^2 + cu + d \)

• Four unknowns: \(a, b, c, d \)

The Cubic Hermite Spline Equation

• After inverting the 4x4 matrix, we obtain:

\[
\begin{pmatrix}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & 1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
x_1 & y_1 & z_1 \\
x_2 & y_2 & z_2 \\
\overline{x}_1 & \overline{y}_1 & \overline{z}_1 \\
\overline{x}_2 & \overline{y}_2 & \overline{z}_2
\end{pmatrix}
=
\begin{pmatrix}
x \\
y \\
z \\
\overline{x} \\
\overline{y} \\
\overline{z}
\end{pmatrix}
\]

• This form is typical for splines
 – basis matrix and meaning of control matrix change
 with the spline type

Piecing together Hermite Splines

It's easy to make a multi-segment Hermite spline:
 – each segment is specified by a cubic Hermite curve
 – just specify the position and tangent at each “joint” (called knot)
 – the pieces fit together with matched positions and first derivatives
 – gives C1 continuity
Hermite Splines in Adobe Illustrator

The Bezier Spline Matrix

\[
\begin{bmatrix}
 x & y & z \\
 u^3 & u^2 & u & 1 \\
\end{bmatrix}
\begin{bmatrix}
 2 & -2 & 1 & 1 \\
 -3 & 3 & -2 & -1 \\
 0 & 0 & 1 & 0 \\
 1 & 0 & 0 & 0 \\
\end{bmatrix}
\begin{bmatrix}
 x_1 & y_1 & z_1 \\
 x_2 & y_2 & z_2 \\
 x_3 & y_3 & z_3 \\
 x_4 & y_4 & z_4 \\
\end{bmatrix}
\]

Bezier Blending Functions

\[
p(t) = \begin{bmatrix}
 (1-t)^3 & 3(1-t)^2 & 3(1-t) & t^3 \\
\end{bmatrix}
\begin{bmatrix}
 p_1 \\
 p_2 \\
 p_3 \\
 p_4 \\
\end{bmatrix}
\]

DeCasteljau Construction

Efficient algorithm to evaluate Bezier splines. Similar to Horner rule for polynomials. Can be extended to interpolations of 3D rotations.

Catmull-Rom Splines

Roller-coaster (next programming assignment)

With Hermite splines, the designer must arrange for consecutive tangents to be collinear, to get \(C^1\) continuity. Similar for Bezier. This gets tedious.

Catmull-Rom: an interpolating cubic spline with \(C^1\) continuity.

Compared to Hermite/Bezier: fewer control points required, but less freedom.
Constructing the Catmull-Rom Spline

Suppose we are given n control points in 3-D: \(p_1, p_2, \ldots, p_n \).

For a Catmull-Rom spline, we set the tangent at \(p_i \) to
\[
s(t_{i+1} - t_{i-1})
\]
for \(i=2, \ldots, n-1 \), for some \(s \) (often \(s=0.5 \)).

\(s \) is a tension parameter: determines the magnitude (but not direction!) of the tangent vector at point \(p_i \).

What about endpoint tangents? Use extra control points \(p_0, p_{n+1} \).

Now we have positions and tangents at each knot. This is a Hermite specification. Now, just use Hermite formulas to derive the spline.

Note: curve between \(p_i \) and \(p_{i+1} \) is completely determined by \(p_{i-1}, p_i, p_{i+1}, p_{i+2} \).

Splines with More Continuity?

• So far, only \(C^1 \) continuity.
• How could we get \(C^2 \) continuity at control points?

• Possible answers:
 – Use higher degree polynomials
 degree 4 = quartic, degree 5 = quintic, … but these get computationally expensive, and sometimes wiggly
 – Give up local control \(\rightarrow \) natural cubic splines
 A change to any control point affects the entire curve
 – Give up interpolation \(\rightarrow \) cubic B-splines
 Curve goes near, but not through, the control points

Catmull-Rom Spline Matrix

\[
\begin{bmatrix}
x & y & z \\
s^2 & 2s & s^2 & 1
\end{bmatrix}
\begin{bmatrix}
s^2 & 2s & s^2 & 1
\end{bmatrix}
\]

• Derived in way similar to Hermite and Bezier
• Parameter \(s \) is typically set to \(s=1/2 \).

Natural Cubic Splines

• If you want 2nd derivatives at joints to match up, the resulting curves are called natural cubic splines

• It’s a simple computation to solve for the cubic’s coefficients. (See Numerical Recipes in C book for code.)

• Finding all the right weights is a global calculation (solve tridiagonal linear system)

Comparison of Basic Cubic Splines

<table>
<thead>
<tr>
<th>Type</th>
<th>Local Control</th>
<th>Continuity</th>
<th>Interpolation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hermite</td>
<td>YES</td>
<td>(C^1)</td>
<td>YES</td>
</tr>
<tr>
<td>Bezier</td>
<td>YES</td>
<td>(C^1)</td>
<td>YES</td>
</tr>
<tr>
<td>Catmull-Rom</td>
<td>YES</td>
<td>(C^1)</td>
<td>YES</td>
</tr>
<tr>
<td>Natural</td>
<td>NO</td>
<td>(C^2)</td>
<td>YES</td>
</tr>
<tr>
<td>B-Splines</td>
<td>YES</td>
<td>(C^2)</td>
<td>NO</td>
</tr>
</tbody>
</table>

Summary:
Cannot get \(C^2 \), interpolation and local control with cubics

B-Splines

• Give up interpolation
 – the curve passes near the control points
 – best generated with interactive placement (because it’s hard to guess where the curve will go)
• Curve obeys the convex hull property
• \(C^2 \) continuity and local control are good compensation for loss of interpolation
B-Spline Basis
- We always need 3 more control points than the number of spline segments

\[
M_{3u} = \begin{bmatrix}
1 & 3 & -3 & 1 \\
0 & -6 & 0 & 0 \\
0 & 0 & 3 & 0 \\
1 & 4 & 1 & 0
\end{bmatrix}
\]

\[
G_{3u} = \begin{bmatrix}
P_{i-3} \\
P_{i-2} \\
P_{i-1} \\
P_i
\end{bmatrix}
\]

Other Common Types of Splines
- Non-uniform Splines
- Non-Uniform Rational Cubic curves (NURBS)
- NURBS are very popular and used in many commercial packages

How to Draw Spline Curves
- Basis matrix equation allows same code to draw any spline type
- **Method 1**: brute force
 - Calculate the coefficients
 - For each cubic segment, vary \(u \) from 0 to 1 (fixed step size)
 - Plug in \(u \) value, matrix multiply to compute position on curve
 - Draw line segment from last position to current position
- What's wrong with this approach?
 - Draws in even steps of \(u \)
 - Even steps of \(u \) does not mean even steps of \(x \)
 - Line length will vary over the curve
 - Want to bound line length
 - too long: curve looks jagged
 - too short: curve is slow to draw

Drawing Splines, 2
- **Method 2**: recursive subdivision - vary step size to draw short lines

\[
\text{Subdivide}(u_0, u_1, \text{maxlength})
\]
\[
x_0 = F(u_0)
\]
\[
x_1 = F(u_1)
\]
\[
\text{if } |x_1 - x_0| > \text{maxlength}
\]
\[
\text{Subdivide}(u_0, \text{umid}, \text{maxlength})
\]
\[
\text{Subdivide}(\text{umid}, u_1, \text{maxlength})
\]
\[
\text{else } \text{drawline}(x_0, x_1)
\]

- Variant on Method 2 - subdivide based on curvature
 - replace condition in "if" statement with straightness criterion
 - draws fewer lines in flatter regions of the curve

Summary
- Piecewise cubic is generally sufficient
- Define conditions on the curves and their continuity
- Most important:
 - basic curve properties
 - what are the conditions, controls, and properties for each spline type
 - generic matrix formula for uniform cubic splines \(p(u) = u B G \)
 - given a definition, derive a basis matrix
 - do not memorize the matrices themselves