Transformations

OpenGL Transformations

OpenGL Transformation Matrices

- Model-view matrix (4x4 matrix)
- Projection matrix (4x4 matrix)

4x4 Model-view Matrix (this lecture)

- Translate, rotate, scale objects
- Position the camera

4x4 Projection Matrix (next lecture)

- Project from 3D to 2D

OpenGL Transformation Matrices

- Manipulated separately in OpenGL (must set matrix mode):
 glMatrixMode (GL_MODELVIEW);
 glMatrixMode (GL_PROJECTION);
Setting the Current Model-view Matrix

- Load or post-multiply

  ```
  glMatrixMode(GL_MODELVIEW);
  glLoadIdentity(); // very common usage
  float m[16] = { ... };
  glLoadIdentity(m); // rare, advanced
  glLoadIdentity(m); // rare, advanced
  ```

- Use library functions

  ```
  glLoadIdentity(x, y, z);
  glLoadIdentity(angle, ax, ay, az);
  glScalef(sx, sy, sz);
  ```

The rendering coordinate system

Initially (after glLoadIdentity()):

- rendering coordinate system = world coordinate system

The rendering coordinate system

```glLoadIdentity(x, y, z);```

The rendering coordinate system

```glRotatef(angle, ax, ay, az);```

The rendering coordinate system

```glScalef(sx, sy, sz);```
OpenGL code

gMatrixMode(GL_MODELVIEW);
LoadIdentity();
Translatef(x, y, z);
Rotatef(angle, ax, ay, az);
Scalef(sx, sy, sz);
renderBunny();

Rendering more objects

How to obtain this frame?

Solution 1:
Find glTranslate(...), glRotatef(...), glScalef(...)

Solution 2: gl(Push,Pop)Matrix

gMatrixMode(GL_MODELVIEW);
LoadIdentity();

// render first bunny
PushMatrix(); // store current matrix
Translate3f(...);
Rotatef(...);
renderBunny();
PopMatrix(); // pop matrix

// render second bunny
PushMatrix(); // store current matrix
Translate3f(...);
Rotatef(...);
renderBunny();
PopMatrix(); // pop matrix

3D Math Review

Scalars
- Scalars $\alpha, \beta, \gamma$ from a scalar field
- Operations $\alpha + \beta, \alpha \cdot \beta, 0, 1, -\alpha, (\ )^1$
- “Expected” laws apply
- Examples: rationals or reals with addition and multiplication
Vectors
• Vectors \( u, v, w \) from a vector space
• Vector addition \( u + v \), subtraction \( u - v \)
• Zero vector \( 0 \)
• Scalar multiplication \( \alpha v \)

Euclidean Space
• Vector space over real numbers
• Three-dimensional in computer graphics
• Dot product: \( \alpha = u \cdot v = u_1 v_1 + u_2 v_2 + u_3 v_3 \)
  • \( 0 \cdot 0 = 0 \)
  • \( u, v \) are orthogonal if \( u \cdot v = 0 \)
  • \( |v|^2 = v \cdot v \) defines \( |v| \), the length of \( v \)

Lines and Line Segments
• Parametric form of line: \( P(\alpha) = P_0 + \alpha d \)
• Line segment between \( Q \) and \( R \):
  \( P(\alpha) = (1-\alpha) Q + \alpha R \) for \( 0 \leq \alpha \leq 1 \)

Convex Hull
• Convex hull defined by
  \( P = \alpha_1 P_1 + \ldots + \alpha_n P_n \)
  for \( \alpha_1 + \ldots + \alpha_n = 1 \)
  and \( 0 \leq \alpha_i \leq 1 \), \( i = 1, \ldots, n \)

Projection
• Dot product projects one vector onto another vector
  \( u \cdot v = u_1 v_1 + u_2 v_2 + u_3 v_3 = |u| |v| \cos(\theta) \)
  \( \text{proj}_v u = (u \cdot v) v / |v|^2 \)

Cross Product
• \( |a \times b| = |a| |b| |\sin(\theta)| \)
• Cross product is perpendicular to both \( a \) and \( b \)
• Right-hand rule
Plane
• Plane defined by point $P_0$ and vectors $u$ and $v$
• $u$ and $v$ should not be parallel
• Parametric form:
  $$T(\alpha, \beta) = P_0 + \alpha u + \beta v$$
  ($\alpha$ and $\beta$ are scalars)
• $n = u \times v / |u \times v|$ is the normal
• $n \cdot (P - P_0) = 0$ if and only if $P$ lies in plane

Coordinate Systems
• Let $v_1, v_2, v_3$ be three linearly independent vectors in a 3-dimensional vector space
• Can write any vector $w$ as
  $$w = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3$$
  for some scalars $\alpha_1, \alpha_2, \alpha_3$

Frames
• Frame = origin $P_0$ + coordinate system
• Any point $P = P_0 + \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3$

In Practice, Frames are Often Orthogonal

Change of Coordinate System
• Bases $(u_1, u_2, u_3)$ and $(v_1, v_2, v_3)$
• Express basis vectors $u_i$ in terms of $v_j$
  $$u_1 = \gamma_1 v_1 + \gamma_2 v_2 + \gamma_3 v_3$$
  $$u_2 = \eta_1 v_1 + \eta_2 v_2 + \eta_3 v_3$$
  $$u_3 = \zeta_1 v_1 + \zeta_2 v_2 + \zeta_3 v_3$$
• Represent in matrix form:
  $$\begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = M \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$$
  $$M = \begin{bmatrix} \gamma_1 & \gamma_2 & \gamma_3 \\ \eta_1 & \eta_2 & \eta_3 \\ \zeta_1 & \zeta_2 & \zeta_3 \end{bmatrix}$$

Representing 3D transformations (and model-view matrices)
Linear Transformations
- 3 x 3 matrices represent linear transformations $a = Mb$
- Can represent rotation, scaling, and reflection
- Cannot represent translation

$$M = \begin{bmatrix}
\gamma_1 & \gamma_2 & \gamma_3 \\
\gamma_2 & \gamma_2 & \gamma_2 \\
\gamma_3 & \gamma_2 & \gamma_3 \\
\end{bmatrix}$$

In order to represent rotations, scales AND translations:
Homogeneous Coordinates
- Augment $[a_1, a_2, a_3]^{T}$ by adding a fourth component (1):
  $$p = [a_1, a_2, a_3, 1]^{T}$$
- Homogeneous property:
  $$p = [a_1, a_2, a_3, 1]^{T} = [\beta a_1, \beta a_2, \beta a_3, \beta]^{T},$$
  for any scalar $\beta \neq 0$

Homogeneous coordinates are transformed by 4x4 matrices

Affine Transformations (4x4 matrices)
- Translation
- Rotation
- Scaling
- Any composition of the above
- Later: projective (perspective) transformations
  - Also expressible as 4 x 4 matrices!

Translation
- $q = p + d$ where $d = [a_x, a_y, a_z, 0]^{T}$
- $p = [x, y, z, 1]^{T}$
- $q = [x', y', z', 1]^{T}$
- Express in matrix form $q = Tp$ and solve for $T$

$$T = \begin{bmatrix}
1 & 0 & 0 & a_x \\
0 & 1 & 0 & a_y \\
0 & 0 & 1 & a_z \\
0 & 0 & 0 & 1 \\
\end{bmatrix}$$

Scaling
- $x' = \beta x$
- $y' = \beta y$
- $z' = \beta z$
- Express as $q = Sp$ and solve for $S$

$$S = \begin{bmatrix}
\beta_x & 0 & 0 & 0 \\
0 & \beta_y & 0 & 0 \\
0 & 0 & \beta_z & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}$$
Rotation in 2 Dimensions

- Rotation by $\theta$ about the origin
  - $x' = x \cos \theta - y \sin \theta$
  - $y' = x \sin \theta + y \cos \theta$

- Express in matrix form:
  \[
  \begin{bmatrix}
  x' \\
  y'
  \end{bmatrix} =
  \begin{bmatrix}
  \cos(\theta) & -\sin(\theta) \\
  \sin(\theta) & \cos(\theta)
  \end{bmatrix}
  \begin{bmatrix}
  x \\
  y
  \end{bmatrix}
  \]

- Note that the determinant is 1

Rotation in 3 Dimensions

- Orthogonal matrices:
  \[
  RR^T = R^TR = I
  \]
  \[
  \det(R) = 1
  \]

- Affine transformation:
  \[
  A = \begin{bmatrix}
  R_{11} & R_{12} & R_{13} & 0 \\
  R_{21} & R_{22} & R_{23} & 0 \\
  R_{31} & R_{32} & R_{33} & 0 \\
  0 & 0 & 0 & 1
  \end{bmatrix}
  \]

Affine Matrices are Composed by Matrix Multiplication

- $A = A_3 A_2 A_1$

- Applied from right to left

- $A \ p = (A_1 A_2 A_3) \ p = A_1 (A_2 (A_3 p))$

- When calling glTranslate3f, glRotatef, or glScalef, OpenGL forms the corresponding 4x4 matrix, and multiplies the current model/view matrix with it.

Summary

- OpenGL Transformation Matrices
- Vector Spaces
- Frames
- Homogeneous Coordinates
- Transformation Matrices